В статье рассмотрена конструкция регулируемого источника питания переменного тока промышленной частоты синусоидальной формы, который способен заменить ЛАТР небольшой мощности.
После выхода из строя ЛАТРа, установленного в стенде СИ-СЦБ, предназначенного для испытания приборов железнодорожной автоматики, автор задался целью заменить его электронным аналогом и успешно воплотил ее в жизнь. Описываемое устройство имеет следующие основные технические характеристики:
- напряжение питания — ~19…24 В;
- выходное напряжение переменного тока — регулируемое от 0 до 300 В;
- максимальная мощность нагрузки — 30 Вт.
Такие параметры, как максимальная мощность нагрузки и максимальное выходное напряжение, будут зависеть от мощности источника питания и параметров выходного трансформатора.
Описание схемы устройства
Идея регулятора напряжения переменного тока довольно проста: необходимо взять регулируемый по уровню синусоидальный сигнал и подать его на усилитель мощности низкой частоты, нагруженный на повышающий трансформатор. Таким образом, можно получить напряжение переменного тока, регулируемое от 0 до значения, определяемого параметрами выходного трансформатора.
Принципиальная электрическая схема устройства показана на рис.1. Схема состоит из двух блоков: модуля питания и регулирования, и усилителя низкой частоты (УНЧ).
В качестве УНЧ использована конструкция двухтактного транзисторного усилителя мощности звуковой частоты, работающего в режиме В. Выбор схемы и конструкции УНЧ обусловлен его простотой, высоким КПД, большой выходной мощностью и высокой температурной стабильностью. Принцип работы такого усилителя подробно описан в [1].
Модуль питания и регулирования служит для преобразования поступающего напряжения переменного тока в двухполярное напряжение постоянного тока, выделения синусоидального сигнала с регулируемой амплитудой для подачи на вход усилителя мощности, и питания вентилятора охлаждения.
Для создания двухполярного напряжения использована однополупериодная схема выпрямления на диодах VD1, VD2 с фильтрующими конденсаторами С2, С3.
Синусоидальный сигнал управления УНЧ снимается с регулируемого делителя R1-R3. Подстроенный резистор R2 служит для установки максимального уровня входного сигнала, обеспечивающего отсутствие нелинейных искажений выходного сигнала УНЧ.
Схема питания вентилятора охлаждения состоит из токоограничивающего резистора R4 и фильтрующего конденсатора С5.
Выход УНЧ защищен от короткого замыкания предохранителем FU1. Для предотвращения возможного протекания через нагрузку постоянной составляющей выходного сигнала, в ее цепи установлен разделительный конденсатор С4.
Конструкция, детали и наладка
Оба функциональных блока устройства собраны на печатных платах из односторонне фольгированного стеклотекстолита. Чертеж печатной платы УНЧ показан на рис.2, а схема расположения элементов — на рис.3.
Резистор R5 использован для поверхностного монтажа, все остальные компоненты схемы — выводные. Особых требований к используемым деталям нет, и они могут быть заменены любыми аналогичными по параметрам. В качестве предвыходных транзисторов можно использовать импортные аналоги, например, комплементарную пару SS8050, SS8550. Для замены выходных транзисторов подойдет пара BD912, BD911, или более мощные 2SA1943, 2СА5200.
Выходные транзисторы VT3, VT4 должны быть установлены на радиатор. Для обеспечения компактности конструкции удобно использовать радиатор охлаждения центрального процессора персонального компьютера с установленным на нем вентилятором. Так как коллекторы выходных транзисторов соединены, то изолировать их от радиатора нет необходимости.
Схема УНЧ допускает параллельное включение выходных транзисторов для обеспечения большей выходной мощности. На плате предусмотрена возможность монтажа двух пар транзисторов.
Наладка УНЧ заключается в установке напряжения между базами транзисторов VT1, VT2 на уровне 0,4…0,5 В. Она осуществляется подбором номиналов резисторов R10, R11.
Чертеж платы модуля питания и регулирования не приводится, так как ее размеры и компоновка будут зависеть от типа используемых компонентов и схемы реализации низковольтного питания. В большинстве случаев разводку этого модуля удобней будет произвести навесным монтажом.
Окончательная наладка устройства сводится к регулировке уровня входного сигнала УНЧ для обеспечения необходимой мощности нагрузки при отсутствии нелинейных искажений. Для этого устройство нагружают требуемой максимальной нагрузкой. Затем движок регулятора R3 переводят в верхнее по схеме положение и, контролируя осциллографом форму сигнала на нагрузке. Подстроечным резистором R2 регулируют амплитуду входного сигнала таким образом, чтобы в выходном сигнале отсутствовали искажения.
Регулировка амплитуды входного сигнала УНЧ приведет к изменению уровня выходного напряжения устройства, поэтому лучше использовать выходной трансформатор, имеющий обмотку с отводами, чтобы была возможность регулировки необходимого максимального уровня выходного напряжения.
Следует отметить, что в связи с отсутствием стабилизации питающего напряжения и свойств выходного трансформатора, уровень выходного напряжения будет достаточно сильно зависеть от мощности нагрузки. Но так как ЛАТР обычно используется для плавной регулировки напряжения от нуля на уже подключенной к нему нагрузке с контролем напряжения и тока, то это не имеет значения.
В авторской реализации для питания устройства от сети ~220 В был использован сигнальный трансформатор СТ-6 номинальной мощностью 40 ВА, а выход УНЧ нагружался на часть вторичной обмотки трансформатора Тр2 стенда. На самом деле выбор схемы питания и типа выходного трансформатора будет зависеть от целей применения устройства.
Во время экспериментов и тестирования регулятора его питание осуществлялось от самодельного трансформатора мощностью около 100 Вт, имеющего выходное напряжение около 17 В, а для нагрузки использовалась вторичная обмотка типового трансформатора ТС-40-2. Первичная обмотка трансформатора Т2 нагружалась лампой накаливания мощностью 40 Вт. Получены следующие результаты тестирования экспериментальной схемы:
- на «холостом ходу» при выведенном на ноль регуляторе уровня: ~U1 = 17,3 В, ~I1=30 мА, =U1=±23 В, ~U2=0, ~I2=30 мА, ~Uвых=0, где: ~U1/~I1 — напряжение/ток во вторичной обмотке трансформатора Т1, =U1 — напряжение питания УНЧ, ~U2/~I2 — напряжение/ток в первичной обмотке трансформатора Т2, ~Uвых — напряжение на вторичной обмотке Т2;
- при установленном на максимум регуляторе (до момента появления искажений выходного сигнала): ~U1 = 17 В, ~I1= 1,4 A, =U1=±20,5 В, ~U2=16 В, ~I2=1,2 А, ~Uвых=220 В;
- при нагрузке вторичной обмотки выходного трансформатора лампой накаливания мощностью 40 Вт: ~U1=16,8 В, ~I1=2,5 A, =U1=±17,7 В, ~U2=14 В, ~I2=2,1 А, ~Uвых=170 В.
Как видно из выше приведенных экспериментальных данных, КПД устройства, при потреблении нагрузкой около 30 Вт, составляет приблизительно 70%.
Заключение
Автором было изготовлено и успешно используется уже три таких устройства. Они хорошо себя показали, так как в сравнении с ЛАТРом имеют лучшую плавность регулирования.
В современных условиях для питания УНЧ удобнее использовать импульсный двухполярный источник питания. Однако в этом случае придется изготовить генератор синусоидального сигнала или же брать сигнал из сети через дополнительный маломощный сетевой трансформатор.
Литература
- Дорофеев. М. Режим В в усилителях мощности 34 // Радио. — 1991. — №3. — С.53-56.
Автор: Дмитрий Карелов, г. Кривой Рог
Источник: журнал Радиоаматор №11-12, 2015