Влияние рабочей частоты на габариты трансформатора
Трансформатор является необходимым элементом любого сварочного источника. Он понижает напряжение сети до уровня напряжения дуги, а также осуществляет гальваническую развязку сети и сварочной цепи. Известно, что размеры трансформатора определяются его рабочей частотой, а также качеством магнитного материала сердечника.
Примечание.
При понижении частоты габариты трансформатора возрастают, а при повышении – уменьшаются.
Трансформаторы классических источников работают на относительно низкой частоте сети. Поэтому вес и габариты этих источников в основном определялись массой и объемом сварочного трансформатора.
В последнее время были разработаны различные высококачественные магнитные материалы, позволяющие несколько улучшить массогабаритные параметры трансформаторов и сварочных источников. Однако существенного улучшение этих параметров можно добиться только за счет увеличения рабочей частоты трансформаторов. Так как частота сетевого напряжения является стандартом и не может быть изменена, то повысить рабочую частоту трансформатора можно, используя специальный электронный преобразователь.
Блок-схема инверторного сварочного источника
Упрощенная блок-схема инверторного сварочного источника (ИСИ) изображена на рис. 1. Рассмотрим схему. Сетевое напряжение выпрямляется и сглаживается, а затем подается на электронный преобразователь. Он преобразует постоянное напряжение в переменное высокой частоты. Переменное напряжение высокой частоты трансформируется при помощи малогабаритного высокочастотного трансформатора, затем выпрямляется и подается в сварочную цепь.
Типы трансформаторов
Работа электронного преобразователя тесно связана с циклами перемагничивания трансформатора. Так как ферромагнитный материал сердечника трансформатора обладает нелинейностью и насыщается, то индукция в сердечнике трансформатора может расти лишь до какого-то максимального значения Вm.
После достижения этого значения сердечник необходимо размагнитить до нуля или перемагнитить в обратном направлении до значения – Вm. Энергия может передаваться через трансформатор:
- в цикле намагничивания;
- в цикле перемагничивания;
- в обоих циклах.
Определение.
Преобразователи, обеспечивающие передачу энергии в одном цикле перемагничивания трансформатора, называются однотактными.
Соответственно, преобразователи, обеспечивающие передачу энергии в обоих циклах перемагничивания трансформатора, называются двухтактными.
Однотактный прямоходовый преобразователь
Преимущества однотактных преобразователей. Однотактные преобразователи получили наибольшее распространение в дешевых и маломощных инверторных сварочных источниках, рассчитанных на работу от однофазной сети. В условиях резко переменной нагрузки, каковой является сварочная дуга, однотактные преобразователи выгодно отличаются от различных двухтактных преобразователей:
- они не требуют симметрирования;
- они не подвержены такой болезни, как сквозные токи.
Следовательно, для управления этим преобразователем, требуется более простая схема управления, по сравнению с той, которая потребуется для двухтактного преобразователя.
Классификация однотактных преобразователей. По способу передачи энергии в нагрузку, однотактные преобразователи делятся на две группы: прямоходовые и обратноходовые (рис. 2). В прямоходовых преобразователях энергия в нагрузку передается в момент замкнутого состояния, а в обратноходовых преобразователях — в момент разомкнутого состояния ключевого транзистора VT. При этом в обратноходовом преобразователе, энергия запасается в индуктивности трансформатора Т во время замкнутого состояния ключа и ток ключа имеет форму треугольника с нарастающим фронтом и крутым срезом.
Примечание.
При выборе типа преобразователя ИСИ между прямоходовым и обратноходовым, предпочтение отдается прямоходовому однотактному преобразователю.
Ведь не смотря на его большую сложность, прямоходовой преобразователь, в отличие от обратноходового, имеет большую удельную мощность. Это объясняется тем, что в обратноходовом преобразователе через ключевой транзистор протекает ток треугольной формы, а в прямоходовом — прямоугольной. Следовательно, при одном и том же максимальном токе ключа, среднее значение тока у прямоходового преобразователя получается в два раза выше.
Основными достоинствами обратноходового преобразователя является:
- отсутствие дросселя в выпрямителе;
- возможность групповой стабилизации нескольких напряжений.
Эти достоинства обеспечивают преимущество обратноходовым преобразователям в различных маломощных применениях, каковыми являются источники питания различной бытовой теле- и радиоаппаратуры; а также служебные источники питания цепей управления самих сварочных источников.
Трансформатор однотранзисторного прямоходового преобразователя (ОПП), изображенного на рис. 2, б, имеет специальную размагничивающую обмотку III. Эта обмотка служит для размагничивания сердечника трансформатора Т, который намагничивается во время замкнутого состояния транзистора VT.
В это время напряжение на обмотке III прикладывается к диоду VD3 в запирающей полярности. Благодаря этому размагничивающая обмотка не оказывает никакого влияния на процесс намагничивания.
После закрытия транзистора VT:
- напряжение на обмотке III меняет свою полярность;
- диод VD3 отпирается;
- энергия, накопленная в трансформаторе Т, возвращается в первичный источник питания Uп.
Примечание.
Однако на практике, из-за недостаточной связи между обмотками трансформатора, часть энергии намагничивания не возвращается в первичный источник. Эта энергия обычно рассеивается в транзисторе VT и демпфирующих цепочках (на рис. 2 не показаны), ухудшая общую эффективность и надежность преобразователя.
Косой мост. Указанный недостаток отсутствует в двухтранзисторном прямоходовом преобразователе (ДПП), который зачастую называют «косой мост» (рис. 3, а). В этом преобразователе (благодаря введению дополнительного транзистора и диода) в качестве размагничивающей обмотки используется первичная обмотка трансформатора. Так как эта обмотка сама с собою полностью связана, то проблемы не полного возврата энергии намагничивания полностью исключаются.
Рассмотрим подробнее процессы, происходящие в момент перемагничивания сердечника трансформатора.
Общей особенностью всех однотактных преобразователей является то, что их трансформаторы работают в условиях с односторонним намагничивантем.
Магнитная индукция В (в трансформаторе с односторонним намагничиванием) может изменяется только в пределах от максимальной Вm до остаточной Вr, описывая частную петлю гистерезиса.
Когда транзисторы VT1, VT2 преобразователя открыты, энергия источника питания Uп через трансформатор Т передается в нагрузку. При этом сердечник трансформатора намагничивается в прямом направлении (участок а-b на рис. 3, б).
Когда транзисторы VT1, VT2 заперты, ток в нагрузке поддерживается за счет энергии запасенной в дросселе L. При этом ток замыкается через диод VD0. В этот момент под действием ЭДС обмотки І, открываются диоды VD1, VD2, и через них протекает ток размагничивания сердечника трансформатора в обратном направлении (участок b-а на рис. 3, б).
Изменение индукции ∆В в сердечнике происходит практически от Вm до Вr и значительно меньше значения ∆В= 2·Вm, возможного для двухтактного преобразователя. Некоторый прирост ∆В можно получить с помощью введения немагнитного зазора в сердечник. Если сердечник имеет немагнитный зазор δ, то остаточная индукция становится меньше, чем Вr. В случае наличия немагнитного зазора в сердечнике, новое значение остаточной индукции можно найти в точке пересечения прямой, проведенной из начала координат под углом Ѳ, к кривой перемагничивания (точка В1 на рис. 3, б):
tgѲ= µ0·lc/δ,
где µ0 – магнитная проницаемость;
lc – длина средней силовой магнитной линии магнитного сердечника, м;
δ – длина немагнитного зазора, м.
Определение.
Магнитная проницаемость – это отношение индукции В к напряженности Н для вакуума (также справедливо и для немагнитного воздушного зазора) и является физической постоянной, численно равной µ0=4π·10-7Гн/м.
Величину tgѲ можно рассматривать как проводимость немагнитного зазора, приведенную к длине сердечника. Таким образом, введение немагнитного зазора эквивалентно введению отрицательной напряженности магнитного поля:
Н1 = -В1/ tgѲ.
Двухтактный мостовой преобразователь
Достоинства двухтактных преобразователей. Двухтактные преобразователи содержат большее количество элементов и требуют более сложных алгоритмов управления. Однако эти преобразователи обеспечивают меньшую пульсацию входного тока, а также позволяют получить большую выходную мощность и эффективность, при одинаковой мощности дискретных ключевых компонентов.
Схема двухтактного мостового преобразователя. На рис. 4, а изображена схема двухтактного мостового преобразователя. Если сравнивать этот преобразователь с однотактными, то он ближе всего к двухтранзисторному прямоходовому преобразователю (рис. 3) . Двухтактный преобразователь легко в него преобразуется, если убрать пару транзисторов и пару диодов, расположенных по диагонали (VT1, VT4, VD2,VD3 или VT2, VT3, VD1, VD4).
Таким образом, двухтактный мостовой преобразователь является комбинацией двух однотактных преобразователей, работающих поочерёдно. При этом энергия в нагрузку передается в течение всего периода работы преобразователя, а индукция в сердечнике трансформатора может меняться от -Вm до +Вm.
Как и в ДПП, диоды VD1—VD4 служат для возврата энергии, накопленной в индуктивности рассеяния Ls трансформатора Т, в первичный источник питания Uп. В качестве этих диодов могут быть использованы внутренние диоды MOSFET.
Принцип действия. Рассмотрим подробнее процессы, происходящие в момент перемагничивания сердечника трансформатора.
Примечание.
Общей особенностью двухтактных преобразователей является то, что их трансформаторы работают в условиях с симметричным перемагничиванием.
Магнитная индукция В, в сердечнике трансформатора с симметричным перемагничиванием, может изменяется в пределах от отрицательно -Вm до положительной +Вm максимальной индукции.
В каждом полупериоде работы ДМП открыты два ключа, расположенные по диагонали. В паузе все транзисторы преобразователя обычно закрыты, хотя существуют режимы управления, когда некоторые транзисторы преобразователя остаются открытыми и в паузе.
Сосредоточимся на режиме управления, согласно которого в паузе все транзисторы ДМП закрыты.
Когда транзисторы VT1, VT4 преобразователя открыты, энергия источника питания Uп через трансформатор Т передается в нагрузку. При этом сердечник трансформатора намагничивается в условном обратном направлении (участок b-а на рис. 4, б).
В паузе, когда транзисторы VT1, VT4 закрыты, ток в нагрузке поддерживается за счет энергии, запасенной в дросселе L. При этом ток замыкается через диод VD7. В этот момент одна из вторичных обмоток (IIа или IIb) трансформатора Т замкнута накоротко через открытый диод VD7 и один из выпрямительных диодов (VD5 или VD6). В результате этого индукция в сердечнике трансформатора практически не меняется.
После завершения паузы открываются транзисторы VT2, VT3 преобразователя, и энергия источника питания Uп через трансформатор Т передается в нагрузку.
При этом сердечник трансформатора намагничивается в условном прямом направлении (участок а-b на рис. 4). В паузе, когда транзисторы VT2, VT3 закрыты, ток в нагрузке поддерживается за счет энергии запасенной в дросселе L. При этом ток замыкается через диод VD7. В этот момент индукция в сердечнике трансформатора практически не меняется и фиксируется на достигнутом положительном уровне.
Примечание.
Из-за фиксации индукций в паузах, сердечник трансформатора Т способен перемагничиваться только в моменты открытого состояния диагонально расположенных транзисторов.
Чтобы в этих условиях избежать одностороннего насыщения необходимо обеспечить равное время открытого состояния транзисторов, а также симметричность силовой схемы преобразователя.
Очень позновательно и доступно. Спасибо!