Керамические конденсаторы являются часто употребляемым элементом любой электронной конструкции. Они применяются там, где необходима работа с сигналами меняющейся полярности, требуются хорошие частотные характеристики, малые потери, незначительные токи утечки, компактные габариты и низкая стоимость. Как правило, все эти требования пересекаются, и сегодня еще не придумано действенной замены неполярным керамическим конденсаторам. Однако еще пять лет назад технология производства керамических конденсаторов для невоенной промышленности позволяла выпускать их в малых габаритах только небольшой емкости.
Действительно, керамический конденсатор емкостью 10 мкФ еще в середине 90-х гг. воспринимался как экзотика, и стоило такое чудо, как горсть оксидных алюминиевых или танталовых конденсаторов той же емкости.
Развитие технологии позволило за два последних года сразу нескольким фирмам заявить о конвейерном производстве керамических конденсаторов емкостью 100 мкФ и более, причем предел возможности увеличения емкости таких конденсаторов пока не виден. Естественно, что произошло обвальное падение розничных цен на все изделия данной группы, повлекшее за собой интерес к вчерашней экзотике.
Одна из новейших технологий – производства керамических конденсаторов большой емкости, запатентованное фирмой Murata (Япония).
Среди разнообразного семейства керамических конденсаторов наиболее современными являются многослойные . Емкость многослойных керамических конденсаторов определяется формулой:
C=E0(ES0N)/D,
где емкость С определяется в фарадах;
E0 – константа диэлектрической проницаемости вакуума;
Е – константа диэлектрической проницаемости керамики (материала, используемого в данном случае в виде диэлектрика );
S0 – активная площадь одного электрода (вывода), мм2;
N- число слоев диэлектрика;
D – толщина слоя диэлектрика, мм.
Из формулы видно, что увеличение емкости конденсатора с керамическим диэлектриком добиваются, уменьшая толщину диэлектрика (керамической пластины), увеличивая число электродов (выводов), создавая конденсаторы с несколькими выводами, в том числе трехвыводные, проходные, и их активную площадь, увеличивая диэлектрическую проницаемость диэлектрика.
Уменьшение толщины диэлектрика и связанная с этим возможность увеличения количества электродов – на сегодняшний день основной способ увеличения емкости керамического конденсатора. Однако снижение толщины диэлектрика (что известно даже школьнику из курса физики) неизбежно приведет к снижению барьера напряжения пробоя такого конденсатора. Поэтому конденсаторы большой емкости, рассчитанные на высокое рабочее напряжение, трудно найти в розничной сети.
Увеличение числа слоев диэлектрика технически связано с уменьшением толщины единичного слоя. Тенденции развития электронной промышленности, например фирмы Murata, показывают, что толщина диэлектрического слоя в керамическом конденсаторе уменьшилась (за последние 10 лет) с 10 до 1,8 мкм. В то же время число диэлектрических прослоек достигает сегодня сотни (против одной – единственной на заре развития неполярных конденсаторов).
Увеличение активности площадки одного электрода приводит к увеличению габаритных размеров, что крайне нежелательно (учитывая, что все больше становятся популярны ЧИП- и SMD-элементы), к тому же возникает неоправданное удорожание себестоимости изделия.
Увеличение диэлектрической проницаемости при заметном увеличении емкости приводит к ощутимому ухудшению параметра ТКЕ (температурной стабильности) и сильной зависимости емкости неполярного конденсатора от приложенного напряжения.
Зачем вообще нужны неполярные конденсаторы большой емкости?
Многослойные неполярные керамические конденсаторы эффективно заменяют танталовые или алюминиевые оксидные конденсаторы для поверхностного монтажа в схемах подавления пульсации, разделения постоянной и переменной составляющих электрического сигнала, в схемах с интегрующими цепочками. Однако при возможных заменах необходимо учитывать принципиальные различия между этими группами компонентов, приводящих иногда к бессмысленности замены оксидных электролитических конденсаторов на аналогичные керамические конденсаторы соответствующих параметров емкости и рабочего напряжения. Почему это происходит?
Частотные свойства конденсаторов определяет зависимость их импеданса и эквивалентного последовательного сопротивления (ESR) от частоты приложенного сигнала. Существенная разница в импедансе на частотах выше 1 кГц с применением алюминиевых оксидных конденсаторов и свыше 10 Гц с применением танталовых конденсаторов позволяет использовать конденсаторы меньшей емкости для сглаживания пульсаций напряжения (что актуально, например, в импульсных источниках питания). Разница в величине сглаживания паразитных пульсаций синусоидальной формы различных частот конденсаторами разного типа, но одинаковой емкости (10 мкФ) приведена в табл.
Таблица. Особенности сглаживания пульсаций разных типов конденсаторов
Частота пульсации, кГц |
Амплитуда пульсации до конденсатора, В |
Выходная амплитуда пульсации, В |
||||
Алюминиевые оксидные конденсаторы |
Танталовые оксидные конденсаторы |
Керамические конденсаторы |
||||
10 |
2 |
0,53 |
0,2 |
0,194 |
||
100 |
2 |
0,34 |
0,064 |
0,016 |
||
500 |
2 |
0,35 |
0,038 |
0,012 |
||
1000 |
2 |
0,33 |
0,03 |
0,003 |
||
Как видно из табл., для обеспечения одинакового с танталовым конденсатором емкостью в 10 мкФ уровня подавления пульсаций частотой 1 МГц можно эффективно использовать керамический конденсатор емкостью 1,0-2,2 мкФ. Экономия места на плате и финансовых затрат на приобретение элементов говорят сами за себя.
Низкое эквивалентное последовательное сопротивление и связанные с ним малые потери позволяют значительно нагружать керамическими конденсаторы относительно оксидных (электролитических) и вводить первые в действие в неприемлемых для оксидных конденсаторов режимах работы (как известно, требуется правильная полюсовка), несмотря на их значительно более скромные размеры. Причем в этом случае не происходит критического для элемента температурного нагрева.
Другим большим плюсом керамических конденсаторов является их способность выдерживать, пусть и кратковременно, высокое напряжение перегрузки, многократно превышающие номинальные. Кто подбирал сглаживающие конденсаторы для импульсного источника питания, знает, насколько это важно!
В импульсных источниках в моменты включения и выключения могут генерироваться импульсы амплитудой, в несколько раз превышающей расчетное напряжение, поэтому выбор выходных и переходных оксидных конденсаторов с большим запасом напряжения оправдан.
Конденсаторы MLCC 1206 с диэлектриком X5R (10 мкФ на рабочее напряжение 6,3 В) пробиваются постоянным напряжением 120-150 В.
Конденсаторы MLCC 1206 Y5V с такими же емкостными и рабочими параметрами пробиваются при постоянном напряжении 310-400 В (такой разброс обусловлен использованием в эксперименте различных образцов конденсаторов).
В то же время алюминиевые и танталовые оксидные конденсаторы емкостью 10 мкФ на рабочее напряжение 16 В (эксперимент на примере В43566 – отечественный аналог К50-32 и танталовый СА-42) на практике пробиваются уже при напряжении от 20 В. То же самое происходило при эксперименте с танталовыми конденсаторами 2,2 мкФ и 16 В – напряжение пробоя также оказалось невысоким – всего 28 В.
Керамические конденсаторы большой емкости производятся с использованием диэлектриков типа X7R/X5R и Y5V. Их отличительной особенностью является сильная зависимость диэлектрической проницаемости и емкости от приложенного напряжения и окружающей температуры. При жестких требованиях к стабильности номинала, например, во времязадающих цепях, или при развязке постоянной и переменной составляющих напряжения на замену оксидным конденсаторам можно рекомендовать разве что керамические с диэлектриком X7R.
Если принять во внимание диапазон рабочих температур керамического конденсатора с таким диэлектриком (от -55 до +125 0С), оказывается, что его можно и нужно применять в широком спектре географических поясов на территории России как в радиоаппаратуре, рассчитанной на работу на улице в условиях севера, так и в автомобильной технике с ее жесткими требованиями к сохранению работоспособности при относительно высоких температурах.
Сведения о некоторых керамических многослойных конденсаторах с разными диэлектриками приведены в табл. Здесь показаны области применения и особенности данного типа конденсаторов.
Таблица. Некоторые многослойные керамические конденсаторы
Типоразмер |
Диэлектрик |
Область рабочих температур, 0C |
Максимальное напряжение Umax, В |
Диапазон емкостей |
Допустимые отклонения от номинала в % |
0603 |
NPO X7R |
от -55 до +125 |
250 200 |
0,5р-4,7Н |
1,2,5,120,20 |
0805 |
NPO X7R |
200-500 500-1000 |
0,5 р-1,5Н 1р-5,6Н |
1,2,5,10 |
|
1206 |
NPO X7R |
200-3000 200-1000 |
1р-3,9Н 1р-4,7Н |
1,2,5,10 |
|
1210 |
NPO X7R |
200-1000 200-1000 |
1р-6,8Н 1Н-270Н |
1,2,5,10 |
|
1808 |
NPO X7R |
500-2000 500-3000 |
1р-2,7Н 100р-4,7Н |
1,2,5,10,20 |
|
1812 |
NPO X7R Y5V |
от -55 до +125 от -30 до +85 |
200-3000 200-2000 250 |
10р-6,8Н 100р-560Н 10Н-560Н |
5,10,20 ±20, +80, -20 |
2220 |
NPO X7R Y5V |
от -55 до +125 от -30 до +85 |
200-2000 250-2000 250 |
1р-6,8Н 100р-470Н 10Н-470Н |
5,10,20 ±20, +80, -20 |