Узким местом квантовых вычислительных систем является точка соприкосновения, в которой происходит обмен информацией между элементами квантовой вселенной и реального окружающего мира. В большинстве случаев это выражается в том, что при любом считывании информации из квантового бита квантовая информация разрушается. Однако, группа ученых из Технологического института Карлсруэ (Karlsruhe Institute of Technology, KIT), возглавляемая профессором Марио Рубеном (Mario Ruben), разработала метод неразрушающего чтения квантовой информации, притом достаточно простой, использующий всего два электрода.
“В обычных условиях каждый контакт с внешним миром изменяет информацию, хранимую в квантовой системе самым непредсказуемым образом” – рассказывает профессор Рубен. – “Для того, что бы создать устойчивые квантовые системы, мы должны научиться ограждать квантовые биты от внешних воздействий, сохраняя их квантовое состояние стабильным. С другой стороны, хранимая квантовая информация должна быть без искажений записана и считана для дальнейшего ее использования”.
В исследованиях, проведенных учеными, был использован атом металла тербия (terbium), вокруг которого была возведена защитная оболочка из 100 атомов углерода, азота и водорода. Эта сложная молекулярная конструкция была помещена в промежуток между тремя золотыми электродами нанометрового размера. Благодаря электрическим и магнитным свойствам сложной молекулы, эти электроды работали как трехканальный транзистор, т.е. напряжение, приложенное к среднему электроду, влияло на электрический ток, текущий между двумя оставшимися электродами.
Подвергнув всю эту конструкцию воздействию импульса магнитного поля, ученые управляли направлением вращения центрального атома металла, его квантовым состоянием. “Измеряя текущий электрический ток, мы обнаружили, что благодаря наличию защитной оболочки вращение атома металла сохранялось неизменным в течение 20 секунд времени. Для квантово-механических процессов это очень и очень долгое время”.
Следует отметить, что достигнутый показатель в 20 секунд уже намного превышает показатель времени хранения информации в той же динамической памяти DDR, которая сейчас используется в каждом компьютере и вычислительной системе. А этот факт позволяет надеяться, что квантовое будущее вычислительных систем находится не за такими уж далекими горами.