Я собираюсь представить вам наиболее удачную среди всех выпускаемых микросхем — это таймер 555 (Abb.1). Поскольку в Интернете вы можете найти большое количество руководств, в которых рассматривается это устройство, и, следовательно, можете спросить, зачем же нам нужно здесь его обсуждать, то у меня для этого есть, по меньшей мере, три причины:
1. Этого нельзя избежать. Вы просто должны знать эту микросхему. По оценке некоторых источников ежегодное производство этих микросхем составляет более 1 миллиона штук ежегодно. Микросхема таймера 555 будет использоваться тем или иным способом в большинстве схем, которые нам еще придется рассмотреть.
2. Микросхема таймера 555 представляет собой отличное введение в интегральные микросхемы, поскольку она является надежными, универсальным устройством и демонстрирует сразу две функции, с которыми мы познакомимся позднее: функцией компаратора и триггера (flip-flop).
3. После чтения всех руководств по ИС 555, которые я смог найти, начиная с исходного текста оригинального технического описания от компании Fairchild Semiconductor и завершая различными описаниями, посвященными электронике в качестве хобби, я пришел к заключению, что его внутреннее функционирование редко объясняется достаточно понятно. Я хочу предоставить вам графическое изображение того, что происходит внутри, поскольку, если вы не будете иметь его, то не получите возможность творческого использования данной микросхемы.
Вам понадобятся:
1. Источник питания с напряжением 9 В.
2. Макетная плата, провода для перемычек и мультиметр.
3. Потенциометр с линейной характеристикой и сопротивлением 5 кОм. Количество — 1 шт.
4. Микросхема таймера 555. Количество — 1 шт.
5. Набор резисторов и конденсаторов.
6. Однополюсные однопозиционные кнопки без фиксации. Количество — 2 шт.
7. Светодиод (любого типа). Количество — 1 шт.
Prozedur
Микросхема таймера 555 очень надежный электронный компонент, но все же, теоретически, разрядом статического электричества вы можете вывести ее из строя. Поэтому, чтобы это исключить, перед тем, как начинать работу с микросхемой, вам надо будет заземлиться. Эта процедура подробно описана далее в Эксперименте 18. в примечании «Заземление себя». Хотя это примечание прежде всего относится к такому типу микросхем, которые называются CMOS (от англ. Complementary Metal-Oxide Semiconductor — комплементарный металлооксидный полупроводник — КМОП) и которые особенно уязвимы, заземление это именно та предосторожность, которой не следует пренебрегать в любом случае.
Посмотрите на маленький идентификационный элемент в форме круглого точечного углубления, на корпусе микросхемы и поверните корпус таким образом, чтобы эта метка (или иначе ключ) находилась в левом верхнем углу при направленных от вас выводах микросхемы. Если же на вашей микросхеме идентификационный элемент (ключ) выглядит как полукруглая выемка на середине одного из торцов корпуса, то надо повернуть микросхему таким образом, чтобы эта выемка находилась вверху.
При таком расположении микросхемы ее выводы нумеруются против часовой стрелки, начиная с левого верхнего вывода (находящегося рядом с ключом). Обратите внимание на рис. 2, на котором, кроме того, приведены наименования выводов микросхемы таймера 555, хотя вам пока нет необходимости знать о них что-то больше.
Вставьте микросхему в вашу макетную плату таким образом, чтобы его выводы попали в отверстия посередине платы. Теперь можно легко подать напряжение питания на одни выводы и получить сигналы с других выводов. Для более точного определения положения микросхемы в первом устройстве посмотрите на Abbildung. 3. Таймер на нем обозначен, как «IC1», поскольку «IC» является общепринятым сокращением словосочетания «Integrated Circuit» (интегральная схема — ИС).
Для всех интегральных схем необходим источник питания. На микросхему таймера 555 напряжение питания должно быть подано следующим образом — отрицательное напряжение на вывод 1, а положительное на вывод 8. Если вы случайно перепутаете полярность, то это может привести к выходу ИС из строя, поэтому будьте очень внимательны при подключении ваших перемычек для подачи питания.
Установите на вашем сетевом адаптере выходное напряжение равным 9 В. Это вполне подходящее значение напряжения для выполнения эксперимента, если вы присоедините плюс питания к правой стороне макетной платы, а минус к левой стороне, как это показано на Abbildung. 3. C3 — это электролитический конденсатор большой емкости, по меньшей мере 100 мкФ, который подключен параллельно источнику напряжения для сглаживания его пульсаций и для обеспечения накопления определенного заряда при подаче напряжения питания на микросхему, которая осуществляет переключения. Кроме этого, он также ограничивает другие быстрые перепады напряжения. Хотя микросхема таймера 555 не является устройством, которое было специально спроектировано для очень быстрого переключения. Однако существуют и другие микросхемы, являющиеся таковыми, и поэтому вы должны взять за правило применять такого рода средства защиты от быстрых переключений.
Сначала повернем ось потенциометра против часовой стрелки до конца для того, чтобы максимально увеличить сопротивление между точками, к которым он подключен. После этого, когда вы приложите измерительный провод вашего тестера к выводу 2, то вы должны получить напряжение 6 В после нажатия кнопки S1.
Теперь поверните потенциометр по часовой стрелке и снова нажмите кнопку S1. Если светодиод D1 не загорится, то продолжайте вращать потенциометр и нажимать и отпускать эту кнопку. Когда вы повернете ось потенциометра примерно на две трети ее полного хода, то вы должны увидеть, что светодиод после каждого нажатия кнопки S1 будет загораться и светиться примерно 5 сек. Далее приведены некоторые факты, в справедливости которых вам следует убедиться самостоятельно.
• Светодиод продолжает гореть после того, как вы отпускаете кнопку S1.
• Вы можете удерживать нажатой кнопку S1 достаточно долго (но меньше продолжительности цикла таймера) и светодиод всегда будет выдавать световой импульс одной и той же длительности.
• Таймер срабатывает после снижения напряжения на выводе 2. Вы можете проверить это своим мультиметром.
• Светодиод D1 будет либо полностью включен, либо полностью выключен. Вы не сможете увидеть слегка мерцающий светодиод, когда он находится в выключенном состоянии, а переход из положения «выключено» и «включено» происходит очень быстро и четко.
Посмотрите на соответствующую электрическую схему устройства (Abbildung. 4) и на расположение всех компонентов на вашей макетной плате (Abbildung. 5). Согласно справочной информации, представленной в листах технических данных таймера 555, в схему нужно будет добавить некоторые компоненты, которые мы обозначим как R1, R2, C1 и C2. Поэтому в этой исходной схеме резисторы обозначены, начиная с R4, а конденсаторы, начиная с C3.
Когда кнопка S1 не нажата, на вывод 2 таймера 555 через резистор R5, который имеет сопротивление 2,2 кОм, поступает положительное напряжение. Поскольку внутреннее входное сопротивление таймера на выводе 2 имеет очень высокое значение, то напряжение на нем будет почти равно напряжению источника питания, т. е. 9 В.
Если же нажать на кнопку S1, то помимо этого к выводу 2 через резистор R8 (потенциометр с сопротивлением 5 кОм) будет подключен еще и минусовой вывод источника питания. Таким образом, для вывода 2 резисторы R8 и R5 образуют делитель напряжения. Вы, наверное, можете вспомнить аналогичное решение, когда вы выполняли тестирование транзисторов. Напряжение между этими резисторами будет меняться в зависимости от значений их сопротивлений.
Если ось потенциометра R8 повернуть примерно наполовину, то сопротивление потенциометра будет примерно равно сопротивлению резистора R5, т. е. в средней точке делителя, подключенной к выводу 2, напряжение будет равно примерно половине напряжения источника питания. Но когда вы будете поворачивать ось потенциометра таким образом, чтобы его сопротивление уменьшалось, напряжение на выводе 2 микросхемы начнет постепенно уменьшаться.
Если у вас есть зажимы на измерительных проводах вашего мультиметра, то вы можете закрепить их на соответствующих выводах элементов, а затем следить за тестером при повороте потенциометра в одну и в другую сторону, после чего каждый раз следует нажимать на кнопку S1.
Графики на Abbildung. 6 иллюстрируют происходящее. На верхнем графике показано напряжение, которое приложено к выводу 2 микросхемы при произвольных нажатиях кнопки и различных положениях оси потенциометра. На нижнем графике показано, что микросхема таймера 555 срабатывает тогда, и только тогда, когда напряжение на выводе 2 становится меньше напряжения 3 В. Что такого особенного в этой величине 3 В? Это одна треть от напряжения питания 9 В.
Далее следуют пункты, которые надо проверить при выполнении домашнего задания.
• Выход микросхемы таймера 555 (вывод 3) выдает положительный импульс только тогда, когда напряжение запуска (вывод 2) становится меньше одной трети напряжения питания схемы.
• Микросхема таймера 555 каждый раз формирует положительной импульс одной и той же длительности (начиная с момента выдачи запускающего напряжения на выводе 2).
• Чем больше сопротивление резистора R4 или емкость конденсатора C4, тем больше длительность выходного импульса.
• Когда на выходе (вывод 3) будет напряжение высокого уровня, то это напряжение будет практически равно напряжению питания. Когда на выходе напряжение низкого уровня, то оно почти равно нулю.
Микросхема таймера 555 преобразует хаотичный мир входных запускающих импульсов в прецизионный и регулируемый на выходе. Микросхема на самом деле не включается и не выключается абсолютно мгновенно, но все-таки достаточно быстро, чтобы каждый раз можно было бы считать ее изменяющейся мгновенно.
Теперь осталась еще одна вещь, которую следует попробовать. Срабатывание таймера приводит к тому, что загорается светодиод D1. Если же в это время нажать на кнопку S2, то она на вывод 4 (Сброс) подаст нулевое напряжение. При этом светодиод должен мгновенно погаснуть.
Когда напряжение на выводе «Сброс» станет низким, выход тоже становится низким вне зависимости от напряжения, которое приложено к выводу «Запуск».
Есть еще одна вещь, о которой я хотел бы упомянуть до начала использования таймера в более интересных схемах. Я включил резисторы R5 и R6 таким образом, что как только вы подадите питание на таймер, он не должен формировать импульсы, но был бы готов к выполнению этого. Данные резисторы задают положительные напряжения соответственно на выводах «Запуск» и «Сброс», что создает такие условия, при которых таймер 555 будет готов запуститься, как только на него подадите напряжение питания.
Пока напряжение на выводе «Запуск» будет оставаться высоким, таймер не будет генерировать импульсы. (Он генерирует импульсы только, когда это напряжение будет меньше некоторого порогового значения.)
Пока напряжение на выводе «Сброс» будет оставаться высоким, таймер будет в состоянии формировать импульсы. (Генерация прекращается, когда напряжение на этом выводе будет иметь низкий уровень.)
Резисторы R5 и R6 известны, как подтягивающие резисторы, поскольку подтягивают напряжение в точках их подключения к напряжению питания. Вы с легкостью можете подавить это напряжение, используя непосредственное подключение этих точек к отрицательному выводу источника питания. Типичное значение сопротивления подтягивающего резистора для таймера 555 составляет 10 кОм. В соответствии с законом Ома при наличии источника питания с напряжением 9 В через резистор будет протекать ток, равный 0,9 мА.
Наконец, вы можете задаться вопросом о назначении конденсатора C5, присоединенного к выводу 5. Этот вывод известен, как вывод «Управляющего напряжения», что означает, что если вы подаете на него напряжение, то вы можете управлять чувствительностью таймера. Я вернусь и рассмотрю это более подробно несколько позднее. Поскольку мы не используем эту функцию прямо сейчас, то в качестве нормального решения будет подключение к выводу 5 конденсатора, чтобы защитить его от колебаний напряжения питания и предотвратить попадание на него какого-либо сигнала, который окажет на этот вывод негативное воздействие при нормальном функционировании.
Прежде чем продолжите чтение, убедитесь, что вы знакомы с основными функциями таймера 555.
Длительность формируемого импульса можно регулировать за счет изменения значений сопротивления резистора и емкости конденсатора С4. Каким же образом вам узнать какие значения надо выбрать? Обратитесь к следующему разд. «Фундаментальные сведения» и посмотрите на табл. 1 с приблизительными уже рассчитанными данными. В этом же разделе имеется формула, воспользовавшись которой, вы можете рассчитать и свои собственные значения.
Я не побеспокоился о том, чтобы в данную таблицу включить импульсы длительностью менее 0,01 сек, поскольку одиночный импульс такой длительности, как правило, не имеет практической ценности. Кроме того, я округлил значения в таблице до 2 цифр после запятой, поскольку значения емкости конденсатора редко бывают более точными.
Basisinformationen |
Таблица. 1 показывает длительность формируемого таймером 555 импульса в режиме одновибратора.
• Длительность импульса приводится в секундах с округлением до двух значащих цифр после запятой. • Горизонтальная шкала показывает значение сопротивления между выводом 7 и положительным выводом источника питания. • Вертикальная шкала показывает общие значения емкости между выводом 6 и отрицательным выводом источника питания. Чтобы рассчитать различную длительность импульса, надо выполнить умножение по формуле: tund = сопротивление x емкость x 0,0011, где сопротивление приводится у килоомах, емкость в микрофарадах, а длительность получается в секундах. |
Basisinformationen |
Почему таймер 555 так полезен?
В своем режиме одновибратора (моностабильном), который мы только что рассмотрели, таймер 555 генерирует один импульс фиксированной (но программируемой) длительности. Есть ли у вас какие-либо мысли, как можно было бы использовать этот прибор? Подумайте о продолжительности времени, когда импульс от таймера 555 управляет некоторым другим компонентом. Датчик движения для включения наружного освещения, например. Когда инфракрасный детектор «видит», что что-то движется, то загорается свет на определенный период времени, который может задаваться таймером 555. Другим применением может быть тостер. Когда кто-то опускает кусок хлеба, переключатель замыкает контакты, что приводит к включению цикла работы тостера. Чтобы изменять длительность этого цикла, вы вместо сопротивления R4 можете использовать потенциометр и присоединить его к ручке, установленной на корпусе устройства, чтобы с его помощью задавать необходимый уровень прожаренности хлеба. В конце цикла тостера выходной сигнал от таймера 555 должен пройти через мощный транзистор, который в свою очередь подает напряжение питания на катушку электромагнита (это что-то вроде реле, за исключением того, что у нее нет контактов для включения/выключения), выбрасывающего прожаренный кусок хлеба. Еще одно применение. Периодически включаемые дворники автомобиля могут управляться таймером 555 — и в прежних моделях автомобилей это было именно так. А что можно сказать об охранной сигнализации, которую мы описывали в Эксперименте 15? Одна из функций, которую я упоминал, и которая не была реализована, это возможность самостоятельного отключения системы сигнализации через определенный, фиксированный интервал времени. Для выполнения этого мы можем использовать регулируемый выходной сигнал таймера. Эксперимент, который вы сейчас будете выполнять, выглядит примитивным, но в нем фактически реализуются все его возможности. |
Ограничения при использовании микросхемы таймера 555
1. Таймер может запускаться от стабильного источника питания с напряжением от 5 до 15 В.
2. Большинство производителей рекомендуют регулирующий резистор, присоединенный к выводу 7, в диапазоне сопротивлений от 1 кОм до 1 МОм.
3. Величина емкости времяопределяющего конденсатора может быть настолько высокой, насколько продолжительным вы хотите получить временной интервал, но точность при увеличении длительности интервала будет падать.
4. На выходе микросхемы может быть получена мощность до 100 мА при напряжении питания 9 В. Этого достаточно для большинства небольших реле или миниатюрных динамиков, что вы увидите в следующих экспериментах.
Остерегайтесь, чтобы не перепутать выводы!
Во всех схемах я привожу микросхемы точно с таким расположением, как было показано ранее — вывод 1 находится вверху слева. В других схемах, которые вы можете найти на веб-сайтах, все может быть показано иначе. Для удобства изображения схем некоторые часто указывают номера выводов микросхем таким образом, что вывод 1 необязательно находится рядом с выводом 2.
Autor: Charles Platt