WordPress database error: [Table './meandr_base/anzpz_usermeta' is marked as crashed and last (automatic?) repair failed]
SELECT user_id, meta_key, meta_value FROM anzpz_usermeta WHERE user_id IN (1) ORDER BY umeta_id ASC

Новый тип магнитоэлектрической памяти позволит создать мгновенно загружающиеся компьютеры – Меандр – занимательная электроника
Site icon Меандр – занимательная электроника

Новый тип магнитоэлектрической памяти позволит создать мгновенно загружающиеся компьютеры

В современной вычислительной технике данные кодируются при помощи электрического тока, протекающего через элементы электронных цифровых схем. Такой подход является главным фактором, ограничивающим дальнейшее увеличение производительности электроники, и определяющим достаточно высокий уровень потребления ею энергии. Но существует еще один метод кодирования данных, в котором используется электрическое поле, воздействующее на магнитные компоненты через слой изолятора. Такое воздействие производится без протекания электрического тока и это все происходит намного быстрее, без существенных затрат энергии, и при помощи таких технологий можно будет создавать вычислительные системы, практически не требующих времени для их загрузки.
1Реализацию такой магнитоэлектрической технологии сделали исследователи из Корнуэльского университета (Cornell University), возглавляемые профессорами Дарреллом Шломом (Darrell Schlom) и Дэном Ральфом (Dan Ralph). Они создали ячейку магнитоэлектрического устройства памяти, которая функционирует при комнатной температуре и которая управляется прикладываемым к ней электрическим полем.

Основой нового устройства памяти является феррит висмута, материал, обладающий уникальным набором свойств. Во-первых, этот материал является магнитным материалом, имеющим свое собственное магнитное поле. Во-вторых, этот материал является сегнетоэлектриком, т.е. поляризация его магнитного поля может быть “переключена” при помощи воздействия электрического поля. Такое совмещение свойств является достаточно редким случаем, ведь с физической точки зрения механизмы, стоящие позади этих свойств, должны подавлять друг друга.

Вышеупомянутая комбинация свойств феррита висмута делает его материалом из семейства мультиферроиков (multiferroic), исследования которых ведутся достаточно интенсивно в течение последнего десятилетия. Уже в 2003 году исследователями из Калифорнийского университета в Беркли была разработана технология изготовления тонкопленочных мультиферроиков на базе феррита висмута, подходящая для условий массового производства и делающая этот материал подходящим для использования в электронной промышленности.

Большая часть мультиферроиков может использоваться в качестве основы для создания устройств энергонезависимой памяти и программируемых матриц логических элементов, имеющих достаточно простую структуру. Однако, во время всех предыдущих исследований мультиферроики надежно работали лишь при сверхнизких температурах порядка 3-4 градусов по шкале Кельвина. “Физика работы этих материалов была захватывающей, но для практического использования эти материалы были бесполезны” – рассказывает профессор Даррелл Шлом, – “Новый материал на основе феррита висмута работает при комнатной температуре, и он является первым материалом-мультиферроиком, на который можно смотреть с точки зрения его практического использования в электронике”.

Ключом к использованию феррита висмута стали исследования, которые позволили ученым в тонкостях разобраться в динамике переключения магнитных свойств этого материала. Ученые выяснили, что существуют два метода переключения, один метод работает за один этап, а второй метод переключает магнитные свойства материала за два шага. Ранее ученые использовали только первый метод, который не обеспечивает стабильного результата. Именно поэтому были сделаны выводы о невозможности практического использования материалов-мультиферроиков. Новый же двухэтапный метод, обеспечивающий надежное переключение материала, прост в реализации и релевантен с технологической точки зрения.

Но у ученых имеется еще масса работы, которую им необходимо проделать. Во-первых, пока им удалось создать только одну ячейку энергонезависимой магнитоэлектрической памяти, а для создания массивов компьютерной памяти потребуются матрицы из миллиардов подобных устройств. Кроме этого, ученым потребуется найти метод увеличения длительности хранения информации в памяти нового типа. Но все, чего им удалось достигнуть на сегодняшний день, указывает на то, что они движутся в правильном направлении.

Exit mobile version