FinFET транзисторы – это новое направление в проектировании микросхем, в котором за счет использования трехмерного затвора транзистора в форме плавника повышается эффективная ширина затвора при сходной площади логической ячейки.
Структура состоит из “плавника” (fin) — т.е. из области диффузии для стока и истока, которая окружена затвором. Физические размеры транзистора описываются высотой плавника, толщиной плавника (или кремния) и длиной канала.
SG (Shorted-Gate) или TG (Tri-gate) FinFET — затворы транзистора соединены между собой. В данный момент активно осваивается в приложении к высокопроизводительным системам.
IG (Independent-Gate) или DG (Double-Gate) FinFET, затворы транзистора независимы (на каждый затвор подается свой сигнал). Очень интересны с точки зрения применения для создания простейших логических топологических единиц. В плане уменьшения статической мощности и занимаемой площади для элементов NAND2, NOR2 и NOT IG-FinFET эффективнее, чем SG-FinFET. Затворы IG-FinFET транзистора независимы, это позволяет использовать один из затворов (back-gate) для обратного смещения транзистора, что дает возможность управлять пороговым напряжением этого транзистора, а тем самым и утечками и задержками транзистора. А это его главнейшие параметры. Для тех, кто в танке: от этого зависит чистота работы транзистора, т.е скорость переключения. Чем быстрее она при одинаковой микроархитектуре, тем быстрее ваши игрульки и контактики бегают.
Также в данный момент идут интенсивное изменение и поиск оптимальной геометрической формы плавника. При низком напряжении на затворе максимальная плотность тока наблюдается посередине канала, где затвор в наименьшей степени способен контролировать переключение устройства. Обедненная область, появление которой связано с высоколегированной областью в самой нижней части канала, предотвращает протекание тока в этой зоне, что является недостатком архитектуры FinFET. При высоком напряжении затвора ток протекает в направлении поверхности раздела. Плотность тока в этой области максимальна за счет фокусирующего действия поля затвора и квантово-механического эффекта концентрации заряда в малой кольцевой зоне.Самое интересное нововведение — это изменения распределения легирования в плавнике. Если верить информации, гуляющей по сети, то все крупные игроки так и не пришли к общему выводу. И даже все образовываемые консорциумы не особо делятся данными технологиями внутри.
Вот представьте, что у вас между соседними транзисторами не превышает 8 нм. А сложность травления растет…
Сложность проектирования растет пропорционально. В данный момент вышло 3 сборника основных решений топологии и ограничений при проектировании, еще не до конца освоенного контрактным производителем в лице TSMC процесса 16 нм при использовании FinFet транзисторов — при том, что 16 нм — это величина самого маленького элемента.
Но вернемся к самим транзисторам. Теперь слой диэлектрика приходится увеличить до 8-12 слоев металлизации, а всему вина сложность травления в вертикальной проекции. Из-за невозможности гарантировано произвести одинаковую по качеству операцию, что приведет к большим проблемам во время металлизации, и так разрушающей кристаллическую решетку… А там и токи утечки подтянутся, которые все не особо хороши. Но главное преимущество у нас в рукаве — расположение! Вертикальное расположение позволяет изменить длину соединений и соответственно шумов и паразитных излучений. А также длину пути сигнала, что способствует улучшению частотных характеристик. Но за все приходится платить — в данном случае сильно возросшим тепловым потоком. Раньше количество транзисторов на единицу площади было в несколько раз меньше, и виной тут не только и не столько