Одним из решений увеличения информационной плотности лазерных коммуникационных каналов является использование дополнительной модуляции, основанной на пространственном положении и форме импульса света. В таком варианте каждый фотон импульса излучается в строго определенный момент времени и имеет пространственное положение, отличное от положения других фотонов, что позволяет закодировать в рамках одного импульса более одного бита информации. Создать источники света, которые могут излучать фотоны немного левее, правее, ниже или выше их геометрической оси, можно и на нынешнем уровне развития технологий, а детектировать такое положение стало возможным только недавно, благодаря новому чипу, содержащему матрицу фотодатчиков.
В новой технологии используются сверхпроводимые датчики единичных фотонов на основе нанопроводников. Экспериментальный датчик может «посчитать» десятки миллионов фотонов в секунду, но исследователи утверждают, что достаточно просто можно обеспечить быстродействие в миллиард фотонов в секунду. Ключевым нововведением, позволившим создать такой датчик, стало использование нового материала, силицида вольфрама, который обеспечивает высокую чувствительность при детектировании отдельных фотонов. Текущая эффективность преобразования энергии фотонов в электрический сигнал превышает 90 процентов. Все другие материалы, испробованные исследователями, обеспечивают более низкую эффективность и их труднее интегрировать в состав сложных электронных схем.
Сверхпроводящие датчики должны работать при чрезвычайно низкой температуре, которая не должна подниматься выше -270 градусов по шкале Цельсия. При такой температуре нанопроводники датчика находятся в сверхпроводящем состоянии, а весь текущий электрический ток равномерно распределяется между всеми нанопроводниками. Когда нанопроводник поглощает фотон света, его температура резко повышается, сопротивление скачкообразно увеличивается. Ток через нанопроводник уменьшается и специальная электронная схема регистрирует точное место и время получения фотона света.
В настоящее время опытный детектор состоит из четырех матриц детекторов, в каждой из которых находится по четыре нанопроводника, а сейчас исследователи работают над новым детектором, в составе которого будут находиться 64 матрицы из 16 нанопроводников в каждой, возможности которого позволят кодировать в одном импульсе лазерного света до одного байта информации.