Предлагаю конструкцию импульсного блока питания, который может пригодиться для питания различной аппаратуры, проведения разного рода радиолюбительских экспериментов, а также может служить для зарядки аккумуляторов. Блок питания имеет незначительный вес, небольшие габариты, по сравнению с трансформаторным 50-герцовым блоком при одинаковой мощности, и высокий КПД. Площадь радиатора охлаждения компонентов значительно уменьшена за счет применения кулера.
Основные технические характеристики:
напряжение питания: 170-240 В, 50-60Гц;
ток в первичной цепи не более 2А;
ток во вторичной цепи не более 8А;
частота генерации в трансформаторе 15-18 кГц.
Данный импульсный блок питания собран из доступных радиодеталей, имеет минимальное количество индуктивностей. В нём отсутствуют оптроны, контроллеры, таймеры и подобные различного рода компоненты, вызывающие у начинающих радиолюбителей трудности при сборке.
Трансформатор изготовлен из сердечника, взятого от строчника старого телевизора или монитора. Сердечник разборный, что даёт возможность укладывать витки без челнока в отличие от кольцевых магнитопроводов. Вторичную обмотку в процессе эксплуатации при желании можно легко изменить — убавить, либо добавить витки. Блок питания имеет защиту от пускового тока, так называемый «мягкий старт», а также отключается при возникновении короткого замыкания в нагрузке. Снабжен ШИМ регулятором. Блок питания собран на двух микросхемах 155-ой серии и 9-ти транзисторах.
Структурная схема представлена на рисунке:
Задающий генератор вырабатывает прямоугольные импульсы, которые поступают на регулятор ШИМ. В регуляторе ШИМ с помощью потенциометра можно изменять их скважность. Одновременно прямоугольные импульсы с генератора поступают на делитель частоты, где она уменьшается вдвое. Далее импульсы приходят на узел формирования, где формируются для двухтактного транзисторного ключа, управляющего импульсным трансформатором. Сюда же через фильтр и выпрямитель подаётся сетевое напряжение. В узел формирования импульсов так же поступает напряжение управления со схемы защиты. Выработанное напряжение с трансформатора выпрямляется диодами и питает схему блока управления, а так же внешние нагрузки.
Разберёмся с работой электрической принципиальной схемы
На микросхеме DD1, логических элементах D1.1-D1.3 собран генератор прямоугольных импульсов, частота следования которых при указанных на схеме номиналах R1 и C1, составляет около 30 кГц. Далее прямоугольные импульсы с вывода микросхемы 8, (см. диаграмму «A») через резистор R2 поступают на ШИМ регулятор, собранный на транзисторе VT1 и элементе D1.4 микросхемы DD1. На коллекторе транзистора VT1 выделяются импульсы пилообразной формы (см. диаграмму «B») . Из диаграммы видно, что при спаде импульса на 8-ом выводе микросхемы положительный импульс на коллекторе транзистора появляется не сразу, а с нарастанием благодаря цепочке R3, R4 и C3. Элемент D1.4 микросхемы формирует из пилообразных импульсов прямоугольные импульсы с более крутыми фронтами (см. диаграмму «C»). Переменным резистором R3 можно изменять скважность импульсов на выходе инвертора D1.4. Далее импульсы через разветвитель из резисторов R9, R10 поступают на базы транзисторов VT4 и VT5. На триггере микросхемы DD2 собран делитель частоты. Снятые импульсы, с неинвертируемого вывода 5 и инвертируемого вывода 6 микросхемы DD2 (см. диаграммы «D» и «E»), через резисторы R13, R14 поступают на базы транзисторов VT6, VT7. Эти транзисторы открываются поочерёдно, шунтируя тем самым то транзистор VT4, то VT5. В итоге в данных точках мы получаем импульсы для управления выходными ключевыми транзисторами VT8, VT9 (см. диаграммы «F» и «G»). Резисторы R17 и R18 в эмиттерных цепях и диоды VD1 и VD2 выполняют защитные функции.
При пуске сетевое напряжение через ограничительный резистор R20, (который спасает диодный мост VD7 от резкого броска тока в следствии заряда конденсатора С7), через предохранитель F1 и фильтр (предотвращающий попадание высокочастотных помех в сеть), состоящий из дросселя и конденсаторов С8 и С9, поступает на диодный мост VD7. Заряжается конденсатор С7 и схема приходит в режим готовности. При замыкании кнопки SB1 напряжение с конденсатора С7 через гасящий резистор R19 поступает на стабилизатор 7805. На входе стабилизатора напряжение не должно быть более 30 в, иначе он выйдет из строя, для этого и служит гасящий резистор R19. Напряжение со стабилизатора поступает на микросхемы D1, D2. Генератор начинает работать. Напряжение на формирователе, выполненном на транзисторах VT4, VT5, VT6, VT7 нарастает постепенно через блок защиты, создавая тем самым мягкий старт устройству.
Рассмотрим работу блока защиты: конденсатор С4 плавно заряжается через резистор R5. Достигнув определённого уровня напряжения на нём, начинают приоткрываться транзисторы VT2 и VT3. Сопротивление резисторов R5, R6 делителя подобраны так, что при напряжении на эммитере VT3 выше 4в этот транзистор полностью открывается. Формирователь запускается, и ключевые высоковольтные транзисторы VT8 и VT9 начинают работать по двухтактной схеме. На диодах VD5 и VD6 выполнен двухполупериодный выпрямитель, служащий для питания схемы управления. Как только схема «завелась», кнопку SB1 можно отпустить и питание схемы управления осуществляется уже от данного выпрямителя. При коротком замыкании во внешней нагрузке, напряжение на выпрямителе VD5 и VD6 резко падает (так как все обмотки находятся на общем магнитопроводе), на эммитере транзистора VT3 оно снижается ниже 4 в и схема управления отключается. После устранения короткого замыкания схему можно заново запустить, нажав кнопку SB1. Питание кулера осуществляется с помощью обмотки 9-10 трансформатора и диодного моста VD4. Силовое напряжение снимается с обмоток 5-6, 7-8 и через двухполупериодный выпрямитель VD3 подаётся на внешнюю нагрузку через амперметр PA1. В качестве выпрямителя здесь применён двойной диод Шотки VD3 от компьютерного блока питания. Я использовал данный импульсник в качестве зарядного устройства, поэтому в разрыв выводного плюсового провода и включил данный прибор-амперметр.
На рисунке показаны некоторые используемые в схеме компоненты:
Транзисторы VT8, VT9 — C3460 от строчной развёртки монитора заменим на C5802, C5387, C5388, J6815. Подойдут также отечественные аналоги от цветных телевизоров прошлых лет КТ838А, КТ846А, КТ847А. Транзисторы VT1 — КТ315Б с любым буквенным индексом. VT4, VT5, VT6, VT7 — C945P (здесь не плохо так же работают отечественные транзисторы серии КТ315Б,Г). Транзистор VT2 – D1616 заменим на КТ3102 с любым буквенным индексом. Вместо указанного на схеме VT3 – A1281, подойдут отечественные транзисторы КТ814, КТ816. Вместо стабилизатора напряжения 7805 подойдёт КР142ЕН5А. Защитные диоды VD1, VD2 – 1N4007 от энергосберегающей лампы. Диодная сборка VD7 – D2SBA, D2SBA60. В крайнем случае, подойдут четыре диода КД226 или аналогичные с обратным напряжением не менее 600в и прямым током не менее 2 А. Диод Шоттки SBL3040PT. В крайнем случае можно использовать два диода Шотки 10TQ045. Вместо диодного мостика кулера DB107 можно поставить диоды, например 1N4004. Электролитические конденсаторы С2, С4 на рабочее напряжение 16в, конденсаторы С5, С6 – на 25в. Конденсатор С7 не менее 400в. Конденсаторы в генераторе и в ШИМ типа К73-17. Резисторы мощностью 0,125-0,25 Вт, кроме R19, R20 (их мощность составляет 1-2 Вт). Кнопка SB1 любой конструкции c нормально открытым контактом без фиксации. Импульсный трансформатор, как уже пояснялось выше, выполнен на сердечнике от строчного трансформатора, взятого от монитора или телевизора. Необходимо аккуратно разобрать строчник, так чтобы не поломать феррит (он очень хрупкий). Если сердечник залит лаком и не вынимается из катушки, то придётся опустить строчник в растворитель на сутки и после уже пытаться разбирать. В крайнем случае можно распилить катушку на части с помощью болгарки или ножевки. Ни в коем случае не стучите по ферриту. Даже при падении он может легко сломаться. Изготавливаем самодельный каркас, как показано на рисунке.
Я использовал толстый маркер. Отпилил его по размеру сердечника, по краям вырезал щеки из тонкой пластмассы (использовал пластмассу от футляра диска CD). Обмотки 1-2 и 3-4 содержат по 120 витков провода ПЭЛ-0,25 мм, обмотка ведётся в навал. Обмотки 11-12, 13-14 по 7 витков ПЭЛ-0,25 мм. Кулерная обмотка 9-10 содержит 8 витков такого же провода. На выводные концы эмалированных проводов надеты цветные ПХВ трубочки. Выходная обмотка 5-6, 7-8 содержит 8+8 витков многожильного цветного монтажного провода используемого в компьютерах. Намотка ведётся виток к витку. Между слоями необходимо проложить фторопластовую плёнку или на худой конец изоленту.
Все элементы, кроме трансформатора, выходных транзисторов и диодных сборок, размещены на печатной плате из фольгированного одностороннего стеклотекстолита.
Обратная сторона печатной платы:
Нумерация элементов и обозначение клемм:
Выходные транзисторы и диодные сборки установлены на алюминиевый радиатор. Для улучшения теплопередачи сопрягаемые поверхности деталей и радиатора необходимо намазать теплопроводящей пастой и плотно протянуть болтами. Диодный мост, на котором собран выпрямитель питающий кулер, так же установлен на этот радиатор. Сглаживающий конденсатор подпаян непосредственно к диодному мосту.
После того как устройство полностью собрано, необходимо приступить к наладке импульсника. Ещё раз проверяем правильность монтажа, цоколёвки радиоэлементов, отсутствия замыкания дорожек на печатной плате. (ПОМНИТЕ, при наличии ошибок могут выйти из строя дорогостоящие радиодетали!). Для наладки нам понадобится источник постоянного напряжения 9-12в, можно нестабилизированный. Две лампочки на напряжение 12в, ток не более 0,3 А и электролитический конденсатор емкостью 470-1000 мкФ, 16в. Резистор R19 и кнопку SB1 закорачиваем перемычкой, а в разрыв коллекторов выходных транзисторов включаем лампочки. Электролитический конденсатор подключаем параллельно конденсатору С1. Плюс к выводам 6, 9, 10 микросхемы, а минус к 1, 2 выводу. С помощью такого способа уменьшается частота задающего генератора до 0,5 Гц и мы имеем возможность наблюдать по индикации лампочек работу устройства — наличие импульсов и пауз. Подаём низкое напряжение 12 в на сетевую вилку (полярность роли не играет, там диодный мост) и смотрим: горит первая лампочка, пауза, горит вторая лампочка, пауза и т.д. Убедившись в правильной работе устройства, перемычки, лампочки и конденсатор удаляем и приводим схему в первоначальное состояние. При наличии осциллографа эту процедуру можно пропустить. Достаточно лишь посмотреть и сравнить осциллограммы в контрольных точках. Приступаем к опробованию устройства. Подключаем нагрузку к выходу устройства, например лампочку на 12в, 30Вт. Затем подключаем устройство к сети, но не напрямую, а через лампу 220в, 100Вт. Движок резистора R3 ставим в крайнее нижнее на схеме положение (т.е. выводим сопротивление). После этого нажимаем кнопку SB1 и запускаем импульсник. При этом должен запуститься кулер и загореться нагрузочная лампочка на 12в. Лампа на 220в должна светиться еле-еле. Если лампа на 220в горит в полный накал, а кулер не запускается, значит в схеме есть ошибки или неисправные компоненты. Еще раз проверяем схему и процедуру повторяем. Если схема запустилась, то удаляем лампу на 220в и включаем устройство напрямую в сеть. Вращением движка переменного резистора R3 проверяем по изменению яркости свечения лампочки на 12в работу регулятора широтно-импульсной модуляции. При нормальной работе импульсника слышится слабый свист, напоминающий строчный свист телевизора.
Устройство компактно уложено в жестяную коробку. Спереди сделано окно для амперметра, сверху установлены пусковая кнопка с переменным резистором. Через заднее отверстие пропущен сетевой шнур.
Спереди через отверстия выходят силовые провода разного окраса с крокодильчиками.
При подключении устройства к сети соблюдайте правила ЭЛЕКТРОБЕЗОПАСНОСТИ!