Все современное оборудование, как промышленное, так и бытовое приводится в действие электричеством. При этом всю его электрическую схему можно разделить на две большие части: устройства управления (контроллеры от английского слова CONTROL – управлять) и исполнительные механизмы.
Лет двадцать назад блоки управления выполнялись на микросхемах малой и средней степени интеграции. Это были серии микросхем К155, К561, К133, К176 и им подобные. Они называются логическими цифровыми микросхемами, так как выполняют логические операции над сигналами, а сами сигналы являются цифровыми (дискретными).
В точности также, как обычные контакты: «замкнут – разомкнут». Только в этом случае эти состояния называются соответственно «логическая единица» и «логический ноль». Напряжение логической единицы на выходе микросхем находится в пределах от половины напряжения питания до его полной величины, а напряжение логического нуля у таких микросхем, как правило, 0…0,4В.
Алгоритм работы таких блоков управления осуществлялся за счет соответствующего соединения микросхем, и количество их было достаточно велико.
В настоящее время все блоки управления разрабатываются на основе микроконтроллеров разных типов. В этом случае алгоритм работы закладывается не схемным соединением отдельных элементов, а «прошитой» в микроконтроллере программой.
В связи с этим вместо нескольких десятков, а то и сотен микросхем блок управления содержит микроконтроллер и некоторое количество микросхем для взаимодействия с «внешним миром». Но, несмотря на такое усовершенствование, сигналы микроконтроллерного блока управления все те же цифровые, что и у старых микросхем.
Понятно, что мощности таких сигналов недостаточно, чтобы включить мощную лампу, двигатель, да и просто реле. В этой статье мы рассмотрим, какими способами можно подключить к микросхемам мощные нагрузки.
Самые простые способы это включение нагрузки через реле. На рисунке 1 реле включается при помощи транзистора VT1, для этого на его базу через резистор R1 от микросхемы подается логическая единица, транзистор открывается и включает реле, которое своими контактами (на рисунке не показаны) включает нагрузку.
Если же в схеме не одно, два реле, а намного больше, то для их подключения выпускается специализированная микросхема ULN2003A, допускающая подключение до семи реле. Такая схема включения показана на рисунке 3, а на рисунке 4 внешний вид современного малогабаритного реле.
Для того, чтобы включить нагрузку (в данном случае светодиоды оптронных тиристоров V1,V2) на базу транзистора VT3 через резистор R12 следует подать логический 0, что приведет к открытию VT3 и VT4. Последний зажжет светодиоды оптотиристоров, которые откроются и включат сетевую нагрузку. Оптронные тиристоры обеспечивают гальваническую развязку от сети собственно схемы управления, что повышает электробезопасность и надежность схемы.
Несколько слов о тиристорах.
Не вдаваясь в технические подробности и вольтамперные характеристики можно сказать, что тиристор — это простой диод, у них даже обозначения похожи. Вот только у тиристора имеется еще управляющий электрод. Если на него подать положительный относительно катода импульс, даже кратковременный, то тиристор откроется.
В открытом состоянии тиристор будет находиться до тех пор, пока через него течет ток в прямом направлении. Этот ток должен быть не менее некоторой величины, называемой током удержания. Иначе тиристор просто не включится. Выключить тиристор можно лишь разорвав цепь или подав напряжение обратной полярности. Поэтому, чтобы пропустить обе полуволны переменного напряжения используется встречно – параллельное включение двух тиристоров (см. рис. 5).
Чтобы не делать такого включения выпускаются симисторы или на буржуйском языке триаки. В них уже в одном корпусе изготовлены два тиристора, включенные встречно – параллельно. Управляющий электрод у них общий.
На рисунке 6 показаны внешний вид и цоколевка тиристоров, а на рисунке 7 то же для триаков.
Этот драйвер внутри себя содержит светодиод, подключенный к выводам 1 и 2 (на рисунке показан вид на микросхему сверху) и собственно оптотриак, который, будучи засвечен светодиодом, открывается (выводы 6 и 4) и, через резистор R1, соединяет управляющий электрод с анодом, за счет чего открывается мощный триак.
Все рассмотренные схемы имеют гальваническую развязку от питающей сети, что обеспечивает надежность работы и электробезопасность при значительной коммутируемой мощности.
Если же мощность незначительна и не требуется гальваническая развязка контроллера от сети, то возможно подключение тиристоров непосредственно к микроконтроллеру. Подобная схема приведена на рисунке 9.
Конечно, в одной короткой статье невозможно описать сразу все схемы, но, основные принципы их работы, кажется рассказать удалось. Сложностей особых тут нет, схемы все проверены на практике и, как правило, при ремонте или самостоятельном изготовлении огорчений не приносят.
Автор: Борис Аладышкин