Предлагаемое устройство предназначено для замены штатного реле-регулятора напряжения в бортсети автомобиля и отличается тем, что поддерживаемое им напряжение зависит от температуры аккумуляторной батареи. Оно не требует налаживания и с помощью сигнальной лампы на приборной панели сигнализирует о некоторых неисправностях системы электропитания автомобиля. Недостатком можно считать необходимость вмешательства в электропроводку автомобиля, так как схема подключения нового реле-регулятора отличается от стандартной. Устройство не предназначено для использования в автомобилях с генераторами, управляемыми по К-Ligne (Mercedes, BMW и некоторые автомобили концерна VAG).
Схема реле-регулятора изображена на Figure. 1. Его основа — микроконтроллер ATtiny85-20SU (DD1), который без изменения схемы прибора, его печатной платы и программы микроконтроллера можно заменить на ATtiny25-20SU или ATtiny45-20SU. С микроконтроллерами других типов приложенные к статье программы работать не будут.
Линия РВ0 (вывод 5) микроконтроллера настроена как выход. На ней программа формирует сигнал управления лампой, имеющейся на приборной панели автомобиля. Через эту же лампу на линию РВ1 (вывод 6) микроконтроллера поступает сигнал о том, что зажигание включено. Этот вход защищён от выбросов напряжения стабилитроном VD2. Кроме указанного на схеме, здесь пригоден любой стабилитрон на 3,3…4,9 В в подходящем корпусе. Конденсатор С6 подавляет шум стабилитрона. Упомянутая выше сигнальная лампа 12 В, 1,2…1,4 Вт включена в коллекторную цепь транзистора VT1, усиливающего сигнал микроконтроллера.
Номинал резистора R11, указанный не схеме, можно уменьшить до 1 кОм, но нельзя увеличивать. Это связано с тем, что вместе с конденсатором С6 он образует интегрирующую цепь, задерживающую на некоторое время после закрывания транзистора VT1 достижение напряжением на входе РВ1 микро контроллера высокого логического уровня. Для безошибочного определения включённого и выключенного состояния замка зажигания автомобиля это время не должно быть больше имеющейся в программе задержки. Максимально допустимое сопротивление резистора R11 2,2 кОм определено экспериментально.
Линия РВ2 (вывод 7) микроконтроллера через усилитель на транзисторах VT2—VT4 управляет обмоткой возбуждения генератора автомобиля. Обратите внимание, что транзисторы VT2 и VT3 питаются напряжением не 5 В, а 9 В от стабилизатора напряжения на стабилитроне VD3. Это необходимо, чтобы подать на затвор транзистора VT4 напряжение, достаточное для его полного открывания, при котором сопротивление открытого канала этого транзистора и рассеиваемая на нём мощность минимальны. Стабилитрон 1N5239B можно заменить любым другим с напряжением стабилизации 9… 10 В.
К линии РВЗ (выводу 2) микроконтроллера подключают датчик температуры аккумуляторной батареи автомобиля. Если в качестве этого датчика применён терморезистор RK1 (я использовал приобретённый на сайте http://www.ebay.com герметизированный, с длинными выводами “NTC Thermistor temperature sensor 10К 1 % 3950”), то вместе с резистором R10 он образует измерительный делитель напряжения. Если датчик — LM335 (ВК1), который подключают вместо терморезистора, то через тот же резистор на него поступает напряжение питания. Конденсатор С4 — сглаживающий.
Обратите внимание, зависимости выходного напряжения от температуры у терморезистора и интегрального датчика температуры неодинаковы, поэтому программы микроконтроллера при использовании этих датчиков должны быть разными. В первом случае — это ATTINY85_HTC_10K, во втором — ATTINY85_LM335. Конфигурация микроконтроллера в обоих случаях должна соответствовать табл. 1. Она совпадает с первоначально установленной заводом-изготовителем.
Линия РВ4 (вывод 3) микроконтроллера использована как аналоговый вход для контроля напряжения в бортсети. Резисторы R1, R6, R7, R9 образуют делитель этого напряжения для подачи на АЦП микроконтроллера. C1R8C3 — фильтр, сглаживающий пульсации измеряемого напряжения.
Резисторы R2—R5 образуют с конденсатором С2 фильтр питания, а с резистором R17 — балластное сопротивление для стабилизатора напряжения на стабилитроне VD3. Интегральный стабилизатор LM1117-5.0 (DA1) обеспечивает напряжением 5 В микроконтроллер.
Le tableau 1
Разряд | Сост. | Décharge | Сост. | |
Расширенный байт | |||
SELFPRGEN | 1 | |||
Старший байт | Младший байт | ||
RSTDISBL | 1 | CKDIV8 | 0 |
DWEN | 1 | CKOUT | 1 |
SPIEN | SUT1 | 1 | |
WDTON | 1 | SUT0 | 0 |
EESAVE | 1 | CKSEL3 | 0 |
BODLEVEL2 | 1 | CKSEL2 | 0 |
BODLEVEL1 | 1 | CKSEL1 | 1 |
BODLEVELO | 1 | CKSEL0 | 0 |
Устройство собрано на печатной плате, изображённой на рис. 2. Она рассчитана на установку резисторов типоразмера 1206 для поверхностного монтажа и таких же конденсаторов (за исключением оксидных С2, С7 и С8). К транзисторам VT2 и VT3 особых требований не предъявляется. Те, типы которых указаны на схеме, можно заменить другими маломощными соответствующей структуры с напряжением коллектор—эмиттер не менее 30 В и в корпусе SOT95. Вместо ВСХ56 подойдёт любой n-p-n транзистор средней мощности в корпусе SOT-89 с допустимыми током коллектора не менее 1 А, напряжением коллектор—эмиттер 30 В и более. При соответствующей доработке платы можно применить подходящие транзисторы и в других корпусах. Например, VT1 — серии КТ815, VT2 — серии КТ315, VT3- серии КТ361.
Полевой транзистор IRLR2905 имеет сопротивление открытого канала 0,027 Ом, максимальный ток стока — 30 А и корпус ТО-252АА. На его месте сможет работать, например, транзистор IRLR2705 (0,04 Ом, 20 А), но он будет выделять заметно больше тепла и потребует более эффективного теплоотвода. Другая возможная замена — полевой транзистор RFP50N06 (0,022 Ом, 50 А). Он довольно популярен в автомобильных УМЗЧ, но имеет корпус ТО-220АВ.
В качестве замены микросхемы LM1117-5.0 подходят по параметрам многие интегральные стабилизаторы напряжения +5 В. Но все они несовместимы с ней по назначению выводов. Поэтому при замене потребуется вносить коррективы в печатную плату.
Диод 10А7 (VD1, устанавливаемый вне печатной платы) можно заменить любым другим диодом с допустимыми прямым током 10 А и обратным напряжением не менее 100 В.
Печатная плата изготовлена из фольгированного с двух сторон стеклотекстолита, но печатные проводники вытравлены только на одной её стороне. Фольга на противоположной стороне платы сохранена и соединена с общим проводом устройства. После травления в плате сверлят отверстия. Затем вырезают из алюминиевого, медного или латунного листа толщиной 1,5…2 мм пластину-теплоотвод размерами 72×42 мм — немного больше, чем сама плата. Используя плату в качестве шаблона, сверлят в пластине четыре крепёжных отверстия (на Figure. 2 эти отверстия большего, чем другие, диаметра).
Предназначенные для не соединяемых с общим проводом выводов деталей отверстия в плате зенкуют со стороны сплошной фольги сверлом большого диаметра, чтобы удалить фольгу вокруг них. Два нижних (по Figure. 2) крепёжных отверстия необходимо раззенковать со стороны печатных проводников. Выводы деталей, соединяемые с общим проводом, при монтаже следует пропаивать с обеих сторон платы.
Закончив монтаж всех деталей и проверив его, положите на плату со стороны печатных проводников пластину-теплоотвод. Она должна опереться на корпус транзистора VT4 и на две шайбы толщиной 2,3 мм, наложенные на верхние (по рис. 2) крепёжные отверстия. Место соприкосновения теплоотвода с корпусом транзистора желательно смазать теплопроводной пастой. Плату и теплоотвод скрепляют четырьмя винтами с гайками.
После проверки готового изделия в работе его разбирают, покрывают плату несколькими слоями влагозащитного лака (обязательно!), при этом защитив от лака соприкасающуюся с теплоотводом поверхность транзистора VT4 и контакты ХТ1—ХТ6, и вновь собирают. Зазор между платой и теплоотводом можно залить термоклеем.
В автомобилях, оборудованных электрогенератором, обмотки статора которого соединены по схеме “звезда” с трёхфазным выпрямительным мостом на шести диодах, новый реле- регулятор подключают по схеме, изображённой на рис. 3. Но предварительно нужно удалить штатные реле-регулятор и реле контроля зарядки аккумуляторной батареи. Места разрыва цепей обозначены на схеме крестами. Отключив от корпуса автомобиля правый (по схеме) вывод сигнальной лампы, соединяют его, как показано на схеме утолщённой линией, с выводом замка зажигания. Диод VD1 (см. Figure. 1) в рассматриваемом случае не требуется.
Если обмотки статора генератора соединены “треугольником”, а выпрямитель состоит из девяти диодов, то новый реле-регулятор подключают к нему по схеме, изображённой на fig. 4. Здесь, кроме проводов, шедших к старому реле-регулятору, нужно разрезать ещё один, присоединённый к левому (по схеме) выводу сигнальной лампы.
Через диод VD1 (см. рис. 1)обмотка возбуждения генератора питается при включённом зажигании, но остановленном или работающем на малых оборотах двигателе автомобиля. В отсутствие диода VD1 генератор при запуске двигателя работать не начнёт.
Непосредственно от замка зажигания (без диода) напряжение на обмотку возбуждения подавать нельзя, так как в этом случае запущенный двигатель продолжит работать и после выключения зажигания.
Датчик температуры крепят к аккумуляторной батарее липкой с двух сторон лентой, не забыв предварительно обезжирить место крепления. На противоположную датчику и батарее сторону ленты наклеивают небольшую поролоновую пластину. Она предохранит датчик от нагревания горячим воздухом подкапотного пространства.
Пока зажигание выключено, программа микроконтроллера “спит”. “Проснувшись” при его включении, она подаёт сигнал “напряжение ниже заданного” — сигнальная лампа часто мигает. Как только после запуска двигателя напряжение генератора достигнет нижнего порогового значения, лампа погаснет, а программа перейдёт в режим стабилизации напряжения. При превышении его верхнего порогового значения программа установит низкий уровень на линии РВ2 микроконтроллера, чем закроет транзистор VT4 и отключит обмотку возбуждения генератора. При снижении напряжения ниже нижнего порога программа установит на линии РВ2 высокий уровень, открывая транзистор, замыкающий цепь питания обмотки возбуждения. Значения напряжения верхнего и нижнего порогов (включения и выключения обмотки возбуждения) зависят от температуры аккумуляторной батареи и
жёстко заданы в программе. Они указаны в табл. 2.
Le tableau 2
Температура батареи, ‘С | Напряжение выключения обмотки возбуждения, В | Напряжение включения обмотки возбуждения, В |
≤0 | 15.0 | 14.8 |
Cinq | 14.8 | 14.6 |
10 | 14.6 | 14.4 |
15 | 14.4 | 14.3 |
20 | 14.3 | 14.1 |
25 | 14.1 | 13.9 |
30 | 13.9 | 13.7 |
35 | 13.7 | 13.5 |
40 | 13.5 | 13.3 |
45 | 13.3 | 13.0 |
≥50 | 13.0 | 12.8 |
По поводу значения напряжения, которое нужно поддерживать, идёт много споров. Теоретически при температуре аккумуляторной батареи -30 °С напряжение должно быть равным 15,9 В. Но как показывает практика, это слишком много для бортовой электроники. А напряжение 12,5 В при прогретой до +50 °С батарее, конечно же, слишком мало. Особенно летом при работающих кондиционере, вентиляторах радиатора и других потребителях тока. Такое напряжение приводит к временному отказу системы ABS. По указанным причинам решено было остановиться на интервале изменения напряжения 12,8…15 В.
Если напряжение остаётся меньшим нижнего порога более 10 с, сигнальная лампа начинает мигать с частотой около 2 Гц. Предусмотрена также индикация неисправности (замыкания или обрыва) в цепи датчика температуры — мигание сигнальной лампы с частотой 0,5 Гц. В этом случае программа удерживает напряжение в пределах 13,8…14 В. Устройство выключается при полном отключении питания либо при снятии питания с сигнальной лампы (выключении зажигания).
Auteur : В. МИТЬКО, г. Тверь
Source : Радио №8, 2015