Ошибка базы данных WordPress: [Table './meandr_base/anzpz_usermeta' is marked as crashed and last (automatic?) repair failed]
SELECT user_id, meta_key, meta_value FROM anzpz_usermeta WHERE user_id IN (1) ORDER BY umeta_id ASC

0

Конденсаторы их виды, характеристики, способы проверки

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций. Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секций. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные (от лат. differentia — различие) конденсаторы. У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой. При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной.

Подстроечные конденсаторы. Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более). Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространена. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора). Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы. Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм. Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, клеем и т. п.).

Саморегулируемые конденсаторы. Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках. Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U.

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°.

Допускаемое отклонение емкости любого конденсатора  от номинала обычно указывают в процентах, но на конденсаторах очень малых емкостей допускаемое отклонение от номинала обозначают в пикофарадах. Если на конденсаторе указано «100± 10%», это означает, что емкость его не может быть меньше 90,и больше 11О пФ. Если в маркировке допуск не указан, то у такого конденсатора допускаемое отклонение от номинала ±20%. На конденсаторах, изготовляемых только с одним, определенным допускаемым отклонением от номинала, например, оксидных (старое название — электролитические) конденсаторов серии КЭ, сегнетокерамических КДС, допуск также не указывается.
При работе конденсатора в цепи, где имеется и переменная и постоянная составляющие, общая сумма напряжения постоянного тока и амплитудного значения напряжения, переменного тока не должна превышать номинального напряжения. Если переменная составляющая напряжения мала (что имеет место во всех каскадах усиления высокой и промежуточной частот приемника), то, выбирая конденсатор, достаточно учитывать только постоянное напряжение на нем. Но в цепях оконечного каскада и выпрямителя надо учитывать также и переменную составляющую..

Следует, однако, иметь в виду, что запас по напряжению не должен слишком завышаться, так как у конденсаторов с большим номинальным напряжением обычно больше габариты, что приводит к увеличению габаритов всего устройства в целом, а также в конечном итоге к повышению стоимости устройства.

Оксидные конденсаторы (или как их ранее называли — электролитические) не рекомендуется использовать при напряжениях переменной составляющей, близких к половине рабочего напряжения конденсатора. Это объясняется особенностями устройства и режимом их работы.

При нормальной температуре фактическая емкость оксидного конденсатора может быть на 20% меньше и на 80% больше обозначенной на его корпусе. При максимальной рабочей температуре, которая для конденсатора широкого применения составляет 70 — 80°С, емкость может увеличиваться на 20 — 30% по сравнению с измеренной при нормальной температуре. У конденсаторов, предназначенных для бытовой аппаратуры, емкость при температуре — 10° С может уменьшиться в два раза но сравнению с емкостью при нормальной температуре (кондсенсаторы К50-6, К50-7). В аппаратуре для полевых, условий работы используются конденсаторы (К50-3, К50-ЗА, К50-ЗБ), у которых емкость снижается не более чем в два раза при температуре — 40 … — 60° С.

Оксидные конденсаторы полярны. Они хорошо работают в цепях постоянного и пульсирующего напряжения. Вместе с тем выпускаются и неполярные оксидные конденсаторы с алюминиевыми и танталовыми фольговыми электродами. Такие конденсаторы могут работать в цепях переменного тока.

Номинальные напряжения выпускаемых промышленностью оксидных конденсаторов находятся в пределах от 3 до 450 В, а номинальные емкости — от долей микрофарады до нескольких тысяч микрофарад, причем конденсаторы с большой емкостью, как правило, имеют меньшие номинальные напряжения.

Так как максимально допустимое напряжение включает в себя и амплитуду переменной составляющей, то для полярных оксидных конденсаторов с рабочим напряжением 100 — 450 В величина переменной составляющей не должна превышать 8% от этих напряжений. Чем больше емкость и номинальное напряжение, тем меньше допустимая амплитуда переменного тока. Если переменная составляющая имеет большую величину, оксидный конденсатор перегревается. В таких случаях оксидные конденсаторы следует заменять конденсаторами других типов, например, бумажными большой емкости.

К особенностям оксидных конденсаторов относится и то, что в фильтрах выпрямителей их можно применять лишь на частотах до 1000 Гц. При повышении частоты (выше 50 Гц) действующая емкость их будет становиться все меньше и меньше по отношению к номинальной, При более высоких частотах допустимая амплитуда переменной составляющей также уменьшается обратно пропорционально частоте. Так, при частоте 100 Гц допустимая амплитуда вдвое меньше, чем при частоте 50 Гц.

Оксидные конденсаторы имеют сравнительно низкое сопротивление изоляции. При номинальном для данного типа конденсаторов рабочем напряжении ток утечки может доходить до 0,1 мА на каждую микрофараду емкости. Утечка свыше этой нормы свидетельствует о плохом качестве конденсатора. Такой конденсатор необходимо заменить.

Оксидные конденсаторы применяют преимущественно в фильтрах блоков питания, в развязывающих фильтрах, а в транзисторной аппаратуре — в цепях связи между транзисторными каскадами и для шунтирования резисторов в цепях эмиттеров транзисторов.

Как и для других радиодеталей, требования к жесткости допускаемых отклонений емкости от номинального значения определяются для конденсаторов в зависимости от того, какую функцию они выполняют в том или другом аппарате. Так, для конденсаторов, шунтирующих резисторы в цепях катодов ламп усилителей ВЧ и ПЧ, конденсаторов фильтра и блокирующих в анодных и экранных цепях, емкости могут быть сколь угодно большие, но не меньше номинальной, указанной на схеме; для разделительных конденсаторов, применяемых в усилителях низкой частоты, отклонения от номинала могут составлять 20 — 30%. Емкость конденсаторов, применяемых в корректирующих цепях, улучшающих частотную характеристику усилителей низкой частоты, не должна отличаться более чем на ±10% от расчетной.

Тип диэлектрика, используемого в конденсаторе, играет решающую роль при определении области применения конденсатора. В колебательных контурах диапазона длинных и средних волн можно использовать практически конденсаторы самых разных типов, в том числе и со слюдяным диэлектриком, хотя такие конденсаторы не всегда обладают достаточно малыми потерями.

Во всех цепях токов высокой частоты можно применять керамические конденсаторы (при емкостях до 1000 — 5000 пФ) или безындукционные бумажные (при емкостях более 1000 — 5000 пФ).

В цепях экранирующих сеток ламп и в анодных фильтрах высокочастотных, каскадов для развязывания цепей допустимо применять безындукционные бумажные конденсаторы; при этом должна быть заземлена или соединена с проводом общего минуса наружная обкладка конденсатора (этот вывод помечается соответствующим знаком на корпусе или торце безындукционных конденсаторов). В низкочастотных каскадах все конденсаторы могут быть бумажные.

Конденсаторы переменной емкости для настройки колебательного контура приемников желательно иметь с воздушным диэлектриком. Еще в большей мере это от- носится к колебательным контурам измерительных приборов. Из подстроечных конденсаторов лучшими являются конденсаторы с воздушными и керамическими диэлектриками.

Основные неисправности конденсаторов: пробой изоляции (короткое замыкание между обкладками), большой ток утечки (плохая изоляция между обкладками), обрыв выводов, а у оксидных (электролитических) — и потеря емкости.

Проверка исправности конденсаторов. Неисправности конденсаторов, особенно большой емкости, такие, как потеря емкости, короткое замыкание и большой ток утечки, могут быть легко обнаружены с помощью мегаомметра, а также омметра или даже простейшего пробника.

Если конденсатор большой емкости исправен, то при подключении к нему пробника стрелка прибора сначала резко отклонится вправо, причем отклонение это будет тем больше, чем больше емкость конденсатора, а затем относительно медленно начнет возвращаться влево и установится над одним из делений в начале шкалы. Если же конденсатор неисправен, то есть потерял емкость или имеет утечку, то в первом случае стрелка прибора вообще не отклонится вправо, а во втором — отклонится почти на всю шкалу, а затем установится на одном из делений в конце ее в зависимости от величины сопротивления утечки. Проверяя конденсатор этим способом, следует всегда обращать внимание на то, не превышает ли напряжение питания прибора допустимого напряжения конденсатора, иначе в конденсаторе может произойти пробой изоляции уже при проверке.

Состояние изоляции у конденсаторов емкостью порядка микрофарад, а иногда и десятых долей микрофарады может быть оценено и по интенсивности искры, если конденсатор подключить сначала к источнику напряжения и зарядить, а затем замкнуть его выводы. Таким способом можно проверять конденсаторы любых типов (кроме электролитических).

В ряде случаев вызывает затруднение проверка конденсаторов малой емкости (порядка десятков и сотен пикофарад), у которых искра при разряде незначительна, а сопротивление утечки настолько велико, что конденсатор с обрывом вывода может быть легко принят за вполне исправный с высоким сопротивлением утечки.

С помощью омметра или авометра в режиме измерения сопротивлений можно в случае необходимости определить полярность оксидного конденсатора (типа К50-6 и др.). При подключении к конденсатору прибор в. зависимости от того, как подключены щупы, в одном положении покажет большее, а в другом меньшее сопротивление. Большее сопротивление соответствует тому случаю, когда плюсовой щуп прибора соединен с положительным полюсом конденсатора.

admin

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *