Управление люстрой по двум проводам

Давно замечено, что увеличение цен на товары и тарифов на жилищно-коммунальные услуги сразу вызывает желание на этих товарах и услугах сэкономить. Обычно после таких повышений в прессе и интернете начинаю! появляться множество нередко противоречи­вых публикаций, полных рекомендаций как экономить правильно и эффективно. Очень часто темой их публикаций являются способы экономии электроэнергии.

Одному из таких способов, который позволя­ет экономить товары (электролампы), а также мень­ше платить за электроэнергию, и посвящена дан­ная статья.

В последние годы большую популярность при­обрели подвесные, врезные и встраиваемые ос­ветительные приборы с множественными источни­ками излучения, как, например, многорожковые люстры, потолочные светильники и т.д.

Они очень удобны, создают уют и нередко яв­ляются составной частью интерьера. Однако за все нужно платить и за излишний расход элект­роэнергии, потребляемый множеством ламп так­же. Поэтому, в целях экономии электроэнергии и ресурса дорогостоящих ламп часть из них лучше держать отключенными, а включать только в слу­чае необходимости. Однако такой вариант не все­гда возможен. Если в квартирах с новой плани­ровкой к выключателю в гостиной идет 3 прово­да, то в квартирах со старой проводкой только 2. Но данное обстоятельство едва ли является серьезной проблемой, даже если в ваши планы укладка допол­нительного провода в стену совсем не входит. Здесь как всегда на помощь может прийти электроника.

В интернете найдется немало схем, которые позволяют управлять количеством горящих в люстрах ламп или коли­чеством горящих потолочных светильников. Например, в [1] была опубликована схема, которая позволяет управлять двумя группами ламп при помощи диодов и двухклавишно­го выключателя по двум проводам (рис.1). Если заняться поисками в интернете, то можно обнаружить еще несколь­ко похожих схем, которые являются модификациями выше­указанной. В одной из таких модификаций клавиши выклю­чателя включены последовательно, а диоды включены параллельно каждой клавише. Таким образом, выбор количе­ства горящих ламп идет методом закорачивания диодов. Но как бы там ни было, всем схемам данного класса присущ очень серьезный недостаток — питание ламп одной полувол­ной напряжения. Для ламп накаливания это вызывает не­приятное мерцание и снижение яркости, а для некоторых типов светодиодных и люминесцентных ламп и вовсе отка­зы в работе.

Рис.1

В литературе есть более совершенные схемы для подобных целей, например, их можно увидеть в [2]. В этих схе­мах отсутствуют недостатки, присущие схемам на диодах, так как здесь используется иной принцип.

Например, для схемы, описанной в [2] включением се­тевого выключателя SA1 напряжение подается на лампу HL1 люстры и на понижающий трансформатор Т1 (рис.2). С вторичной обмотки выпрямленное напря­жение через контакты К2.1 включает реле К1. Через контакты К1.1 и диод VD9 начинает заряжаться С1. Для того чтобы включить лампу HL4 (или группу ламп) люстры, необходимо быстро перещелкнуть выключате­лем SA3. Тогда при размыкании контактов реле К1 обесточится и его контакты К1.1 подключат заряжен­ный конденсатор к обмотке реле К2. Реле К2 сработает и отключит контактами К2.1 реле К1 от выпрямителя, а контактами К2.2 подключит лам­пу HL4 или группу ламп параллельно лампе HL3. Как только контакты сетевого выключате­ля вновь будут замкнуты, реле К2 самоблокируется через контакты К2.1. При этом заго­рятся все лампы люстры.

Рис.2

Существует также еще одна модификация данной схемы (рис.3), в которой вместо элект­ромагнитных реле применяется тиристор. Еще необычность данной схемы заключается в том, что низкочастотный трансформатор выполняет не совсем обычные функции. С одной стороны он является датчиком тока, протекающего через лампу HL5, а с другой стороны он является источником питания управляющего электрода тиристора VD1. Открывают тиристор импульсы тока, проте­кающего при разряде конденсаторов С3, С4.

Рис.3

Все вышеупомянутые схемы просты в изготовлении и надежны о работе, однако широкого распространения так и не получили из-за одного неявного недостатка. И он начи­нает проявляться, как только начинается воплощение лю­бой из вышеуказанных схем «в железе». Этим недостат­ком является наличие низкочастотного трансформатора. По­этому при изготовлении схемы сразу возникает совсем не риторический вопрос: «Как много найдется трансформато­ров, которые можно вставить в люстру и как много найдет­ся люстр, в которые можно вставить трансформатор?».

Следующим этапом развития идей в сфере управле­ния светом по двум проводам стало применение в каче­стве средств управления интегральных микросхем (счет­чиков, триггеров и т.д.) и микроконтроллеров, а в качест­ве исполнительных устройств полевых транзисторов, симисторов, а в некоторых случаях и старых добрых электро­магнитных реле.

И если с логическими микросхемами все понятно, то микроконтроллер — это не только хард, но еще и софт, а с софтом не всякий может совладать. К тому же, по мнению автора, применение микросхем и уж тем более микрокон­троллеров ведет к неоправданному усложнению схемотех­ники и удорожанию конструкции, что для такой простой за­дачи в большинстве случаев совершенно ни к чему.

По мнению автора в данном случае можно обойтись гораздо более простыми решениями. Например, одним из таких решений есть схема изображенная на рис.4. Она крайне проста и может служить даже не в качестве «кон­струкции выходного дня», а скорее в качестве «конструк­ции свободного вечера».

Рис.4

Принцип работы данного устройства основан на разни­це тока (напряжения) срабатывания якоря реле К3 и тока (напряжения) его отпускания. Эта разница имеет место бла­годаря тому, что при срабатывании якорю необходимо пре­одолевать противодействие пружины. Поэтому удержать ре­ле включенным (при отсутствии ударов и вибрации) впол­не способен ток, который обычно меньше тока подъема яко­ря в несколько раз.

Как видно из рисунка схема крайне проста и состоит из маломощного импульсного источника питания (ИП), ре­ле и конденсатора емкостью 1000 мкФ. В качестве импульсного ИП было применено китайское зарядное устройство для мобильного телефона. Такой ИП пришлось применить по причине того, что низкочастотный трансформатор для данной конструкции не подходит из-за несовместимости его габаритных размеров с конфигурацией и габаритными раз­мерами люстры (см. фото в начале статьи).

Применение же источников питания на основе резис­торных или конденсаторных балластов для подобных целей представляются автору весьма сомнительной затеей. При­чем это связано в первую очередь со сложностью и необ­ходимостью стабилизации напряжения при нулевом потреб­лении тока нагрузкой (когда реле обесточено), а для рези­сторного балласта еще и с необходимостью рассеивания большого количества тепла при номинальной нагрузке (ког­да реле под током).

Поэтому в качестве источника питания было выбрано зарядное устройство для старого мобильного телефона. Несмотря на схемотехнический минимализм, такие заряд­ные устройства обладают достаточной надежностью, они мо­гут длительное время работать как при нулевом потреблении тока от них, так и с номинальной нагрузкой. Исходя из значения напряжения, на которое рас­считан данный источник питания, я примерно 5…6 В, было подобрано реле с необходимым на­пряжением срабатывания. Таким реле оказалось HLS-14F1L-5VDC-C — малогабаритные реле с од­ной группой переключающих контактов для мон­тажа на печатную плату. Его параметры приведе­ны в таблице.

Разумеется, устройство по данной схеме мож­но изготовить на другое напряжение при наличии иного импульсного ИП и реле на соответствующее напряжение срабатывания. В этом случае номиналы рези­сторов придется изменить. Номинал резистора R3 подби­рается на ток равный току удержания якоря реле, что при­мерно в 2-3 раза больше тока отпускания (при этом нужно помнить, что якорь реле притягивается благодаря зарядно­му току конденсатора С5). Номинал резистора R4 должен быть примерно в 10 раз меньше резистора R3. Номинал конденсатора С5 можно изменять в пределах 470-1000 мкФ.

После того, как схема собрана и проверена, ее нужно в течение нескольких часов «прогреть». Очень вероятно, что четкость срабатывания схемы нарушится и потребует­ся корректировка номиналов резисторов. После этого опе­рацию с «прогревом» следует повторить. Это связано в окон­чательной ««формовкой» конденсатора С5. Если после вто­ричного «прогрева» схемы параметры не нарушились, то ее можно устанавливать в люстру.

На рис.4 показано, что реле К3 своим фронтовым кон­тактом К3.1 включает дополнительную лампу (или группу ламп) HL8. Тогда при первом включении будут загораться сразу все лампы.

Однако, вполне возможен вариант, когда эту лампу или группу ламп будет включать тыловой контакт. В этом слу­чае при первом включении будет загораться только лампа HL9. Какой вариант выбрать, скорее всего, будет зависеть от места установки такого светильника или люстры и лич­ных предпочтений.

Литература:

  1. И. Синельников. Две команды по двум проводам // Радио. 1981. — №7-8.
  2. Ю. Гранкин. Управление люстрой по двум проводам. // Радио. — 1984. — №1.

Автор: Геннадий Котов, г. Антрацит

Возможно, вам это будет интересно:

Постоянная ссылка на это сообщение: http://meandr.org/archives/36713

Добавить комментарий