Ошибка базы данных WordPress: [Table './meandr_base/anzpz_usermeta' is marked as crashed and last (automatic?) repair failed]
SELECT user_id, meta_key, meta_value FROM anzpz_usermeta WHERE user_id IN (1) ORDER BY umeta_id ASC

ШИМ стабилизаторы постоянного напряжения и тока — Меандр — занимательная электроника
Site icon Меандр — занимательная электроника

ШИМ стабилизаторы постоянного напряжения и тока

В статье описываются различные варианты построения AC/DC преобразователей со стабилизацией выходного напряжения или выходного тока предназначенные для работы как на активную, так и на индуктивную нагрузку.

Широтно-импульсная модуляция (PWM, Pulse-Width Modu­lation) — это распространенный способ управления мощнос­тью, подводимой к нагрузке, методом изменения ширины (дли­тельности) импульсов или паузы между импульсами при по­стоянной или изменяющейся частоте. ШИМ широко приме­няется в промышленности и в быту для регулировки и ста­билизации напряжения или тока преобразователей, блоков питания, зарядных устройств, сварочных аппаратов и т.п.

На рис.1 отображены различные варианты ШИМ. Отно­шение периода следования электрических импульсов к их длительности называется скважностью, а для ШИМ-регуляторов — это величина обратная мощности выделяемой в нагрузке. Так для уменьшения тока нагрузки мы должны уве­личивать скважность регулируемого тока и наоборот.

Рис. 1

Вниманию читателей предлагается схема устройства, на основе таймера NE555 (отечественный аналог 1006ВИ1) Это — источник регулируемого стабильного напряжения или тока для изолированных от земли мощных потребителей посто­янного тока, таких как, например, роторы мощных синхрон­ных машин или двигатели постоянного тока (ДПТ). На рис.2 показан стабилизатор напряжения, на рис.3 — стабилиза­тор тока. Максимальная величина тока нагрузки (в десят­ки или даже сотни ампер) определяется способностью се­тевого выпрямительного моста VD1, силового ключа VТ1 и габаритами радиатора охлаждения, на котором они установ­лены. а при индуктивной нагрузке — еще и параметрами диода VD7, ток через который, в этом случае, соизмерим с током нагрузки.

Рис. 2

Работает стабилизатор следующим образом: при дости­жении параметра на соответствующем датчике напряжения или тока (R14 на рис.3), на резисторе RV1, а, следователь­но, и на оптроне VU1 формируется сигнал обратной связи, который блокирует работу задающего генератора DA1 и, та­ким образом, запирает силовой ключ VT1. Выходной параметр, вследствие разряда емкости и/или индуктивности, начинает снижаться и затем работа генератора возобновляется.

Рис. 3

Из-за высокого быстродействия микросхемы, частота ком­мутирования режимов работа-блокировка получается значи­тельной и может даже превышать частоту генерации ШИМ (рис.4) и, как следствие, коэффициент стабилизации схемы будет довольно высоким.

Рис. 4

Рассмотренный выше автоматический способ управления таймером NE555 по входу Е (выв.4) не является единствен­но возможным. Управляющий сигнал через оптрон (или ка­ким-либо другим методом) можно подавать на вход R (выв.6), т.е. на частотозадающий конденсатор С11, при этом можно регулировать скважность в достаточно широких пределах, или на вход Uн (выв.5). При этом пределы регулирования будут несколько меньше, но можно добиться так называемого эф­фекта перерегулирования. В этом случае при уменьшении се­тевого напряжения или при увеличении тока нагрузки, выход­ное напряжение не уменьшается, а увеличивается и наоборот.

О деталях преобразователя

В роли (рис.2 и рис.3) лучше всего использовать мощный IGBT или MOSFEET транзистор с номинальным то­ком не ниже максимального тока нагрузки.

Рис. 5

Например, для построения возбудителя мощного синхрон­ного двигателя можно использовать IGBT транзистор, изоб­раженный на рис.5 – MG300Q1US11 (номинальный ток 300 А и напряжение более 1000 В). В практике ремонта оборудо­вания у электриков бывают случаи выхода со строя силовых IGBT-модулей, таких, например, как SKM150GB128D (рис.6), M150DSA120  или CM200DY-24NF (рис.7). При этом, как правило, один из двух транзисторов модуля остается ис­правным. Для нашего случая это и «спасение» ценной дета­ли, и защита бюджета от немалых расходов при приобрете­нии очень дорогих компонентов.

Рис. 6

Рис. 7

Цепочка R15, С15 (рис.2 и рис.3) — это снаббер, т.е. дем­пфирующее устройство, не допускающее опасного перенапря­жения при закрывании ключа. На схемах рис.8 и рис.9 снаб­бер дополнен диодом VD11, заметно уменьшающим тепловые потери на резисторе снаббера.

Рис. 8

Рис. 9

Диод VD7 (рис.2, рис.3) необходим для работы с индук­тивной нагрузкой. Для токов в десятки и сотни ампер можно применить быстрый спаренный диод MURP20040CT фирмы Motorola (200 А, 400 В). Для меньших токов можно использо­вать менее мощные диоды, но они должны быть «быстрыми» — серии SF, UF. HER, FR (в порядке ухудшения быстродействия). Если нагрузка не индуктивная: нагреватели, гальванические ванны и др., то этот диод можно не устанавливать.

Рис. 10

Фирма Semikron выпускает, как бы специально для на­шего случая, очень интересный IGBT-модуль SKM400GAL128D (рис.10), в состав которого входит, кроме обычного парал­лельного транзистору диода, еще один силовой диод, «вмес­то» «верхнего» транзистора. Использовать подобный модуль можно согласно схеме на рис.11. Кстати, на этой схеме по­казано, что питать устройство можно не только фазным на­пряжением сети, но и линейным, что позволяет получать ста­бильное регулируемое постоянное напряжение на выходе до 550 В и более.

Рис. 11

Получить повышенное напряжение можно и от однофаз­ной сети, если воспользоваться удвоителем напряжения. Для этого (см. рис.11) нужно заменить один полумост (VD4) двумя оксидными конденсаторами, включенными последователь­но вместо диодов моста (аналогично включены С2, С3 на том же рисунке). В этом случае выпрямленное напряжение составит 640 В, но мощность всей установки будет ограни­чена емкостью этих конденсаторов.

В роли R1, ограничителя зарядного тока конденсаторов сетевого фильтра, должен быть резистор, способ­ный кратковременно выдержать сетевое напряже­ние без разрушения. Следует только заметить, что чем больше сопротивление этого резистора, тем меньше может быть его мощность, но тем доль­ше будут заряжаться конденсаторы С2, С3 до го­товности к работе. Ограничителем зарядного то­ка может быть лампа накаливания на напряже­ние 230 В, а лучше — две (рис.3). Конденсаторы С21, С22 вместе с диодным мостом VD12 на рис.12 служат для замены «энергоемкого» резистора в цепи питания схемы управления (R2 на рис.2), они должны быть рассчитаны на напряжение не ниже 350 В. Их емкость определяет ток через стабилитрон VD2 и, следовательно, степень его нагрева и каче­ства стабилизации. При большем токе стабильность напря­жения питания микросхемы улучшается, но возникает необ­ходимость использования радиатора для стабилитрона.

Рис. 12

Улучшить параметры стабилизации без установки радиа­тора и защитить схему от наводимых помех, поможет вто­рая ступень стабилизации на стабилитроне VD3 (рис.11). Будет значительно лучше, если использовать интегральный стабилизатор DA1 (рис.12).

Но самым радикальным способом улучшения стабильно­сти работы устройства будет питание схемы управления от отдельного источника питания (AC/DC преобразователь на рис.3). В качестве последнего можно использовать заряд­ное устройство от старой «мобилки» с выходным напряже­нием 8.. 12 В. Автор встречал китайские «зарядки» с напря­жением более 16 В — такие тоже подходят. Гальваническую развязку обеспечивает трансформатор в зарядном устрой­стве. Дополнительная стабилизация напряжения источника, в этом случае, тоже не помешает. Важным условием пра­вильной работы схемы является последовательность вклю­чения источника питания микросхемы — только после заряда накопительных конденсаторов С2, С3, что обеспечивает дополнительная контакт­ная группа К1.2 контактора К1 (рис.2).

Назначение стабилитронов VD9, VD10 в измерительной цепи — ограничить «сни­зу» регулировку выходного напряжения. Дело в том, что трудно представить себе прикладное назначение подобного устрой­ства с регулировкой от нуля до 300 В. да­же лабораторные источники питания с та­кими возможностями вряд ли имеют смысл. Минимальное выходное напряжение источ­ника примерно соответствует напряжению стабилизации VD9 (VD10). Так если, на­пример, требуется напряжение в пределах 200…300 В, то в роли VD11 необходима сборка из трех стабилитронов на 65…70 В каждый, напри­мер BZX55C68. Д817Б или двух на 100В (BZX55C100, Д817Г). С высоковольтными стабилитронами нужно быть осторож­ным — при большом токе через них стабилитроны сильно гре­ются, а малого тока через них может не хватить для нор­мальной работы светодиода оптрона.

Ограничить «сверху» выходное напряжение поможет ус­тановка дополнительного резистора R16 в измерительной це­пи (рис.11).

Для индуктивной нагрузки (обмотка возбуждения элект­рической машины, электромагнит металлообрабатывающего станка и т.п.) конденсатор С16 не нужен. Индуктивность дрос­селя L2 должна быть не меньше 10 мГн для минимальной частоты преобразования в десятки герц (определяется пара­метрами элементов R8, R12, С11) и может быть уменьшена для более высоких частот. Кстати, «сложность» частотозада­ющей цепи (R8, R12. С11, VD13) определяется необходимо­стью сформировать «естественную» (без обратной связи) фор­му сигнала, отличающуюся от «меандра» (это — когда скважность равна двум, см. рис.1,а, Nom.), а сделать ее с боль­шим заполнением, близким к единице (рис.1,а, Мах).

Дроссель L1 не является необходимой деталью схемы, а служит лишь для улучшения коэффициента мощности (увели­чения cosφ), что требуют энергогенерирующие компании.

На потребительские свойства этот элемент не вли­яет (кроме ухудшения массо-габаритных показате­лей). Конструкция обоих дросселей (L1, L2) не име­ет особого значения, лишь бы они не насыщались при максимальном токе (они должны быть или очень большого геометрического размера, или с немагнит­ным зазором в магнитопроводе), сечение провода должно быть рассчитано на максимальный ток, а изоляция — на максимальное напряжение.

Конденсатор С14 имеет принципиальное значе­ние — он уменьшает наводимые помехи и замедляет процессы в цепях обратной связи а, следовательно, уменьшает частоту коммутации при стабилизации вы­ходного параметра. Дело в том, что IGBT ключи не «любят» работать на частотах в десятки килогерц — им «комфортнее» если частота переключения не вы­ше 10… 15 кГц (MOSFEET транзисторы могут работать на частотах в десятки раз больших). Качество стабилизации от этого немного ухудшается, но если «надеж­ность» не пустой звук для разработчика, то это того стоит.

Первое включение и настройка устройства

Очень важно! Рассматриваемые устройства не имеют гальванической развязки от сети 230 В / 50 Гц, т.е. все эле­менты находятся под опасным для человека напряжением.

Перед подачей сетевого напряжения желательно убедить­ся в исправности регулятора. Для этого от внешнего источника напряжением 8..15 В нужно запитать микросхему, си­ловую часть и регулятор RV1 по схеме рис.13. Роль нагруз­ки может играть автомобильная лампочка с мощностью, ко­торую может обеспечить временный источник питания. После сборки временной схемы и подачи напряже­ния, лампа должна загораться с максимальным накалом при перемещении движка RV1 вверх и должна притухать до минимума при перемещении движка RV1 вниз. Если так и есть, можно (после восстановления исходной схемы) подавать высо­кое напряжение.

Рис. 13

Улучшение потребительских свойств преобразователя

Само собой разумеется, что питать схему мож­но не только непосредственно от сети 230 В / 50 Гц, а и через силовой разделительный трансформатор со вторичной обмоткой на нужное напряжение (от 30 до 400 В), который на схемах не показан.

На практике часто возникает необходимость в защите от экстремальных условий работы источника питания — перегрузки, короткого замыкания в нагрузке, перенапряжения и т.п. Предлагаемая разработка имеет неограниченные возможнос­ти модернизации. На рис.12 изображена схема с защитой от короткого замыкания в нагрузке — в случае превышения тока через датчик тока К3, срабатывает геркон (К3.1) и, свои­ми контактами, дает отпирающий импульс на управляющий электрод тиристора VS1, который, в свою очередь, блокирует таймер DA1 и зажигает лампу HL3. В таком положении схе­ма будет находиться до отключения питания и устранения не­исправности. Датчик тока К3 представляет собой провод или шину, свитые в спираль, вдоль оси которой и на­ходится геркон К3.1. Ре­гулировка чувствительно­сти датчика производит­ся продвижением геркона вдоль оси спирали. Для токов в единицы ам­пер эта спираль содержит десятки витков, для десятков ампер — единицы витков, а для тока в сотни ампер геркон располагается поперек токо­ведущей шины и регулируется поворотом на некоторый угол от перпендикуляра — самого чувствительного его положения.

Короткие замыкания в плюсовой шине нагрузки, как и питающих шинах, представляют собой особый вид замыка­ний, с которым трудно бороться. В этом случае (рис.11) дат­чик тока К3 в плюсовой шине питания защищает не столько нагрузку, сколько источник питания, диодный мост и контак­ты К1. От перегрузок спасет подобная защита в цепи отри­цательной шины нагрузки (рис.14), рассчитанная на отклю­чающий ток, незначительно превышающий номинальный (при­мерно на 15…20%). Тогда реле Кб заблокирует только тай­мер DA1 (перегруз), а реле К3, при коротком замыкании на землю, отключает контактор К2 и, следовательно, К1 (как на рис.11). Если неисправность не устранена, разряжаются на­копительные конденсаторы и загорается «сигнальная» лам­па HL2, которую можно сопроводить надписью «Авария» или «Неготовность».

Рис. 14

Защитить устройство от коротких замыканий в нагрузке и других токовых нарушений так же может установка индук­тивности L4 в цепи эмиттера силового ключа (рис.12). В за­висимости от номинального тока установки число витков катушки L4 может быть от единиц до десятков (аналогично дат­чику тока К3 на рис.11), с сечением провода, заведомо боль­шим необходимого (рис.15). В нормальном режиме этот эле­мент (из-за своего ничтожного активного сопротивления) не оказывает существенного влияния на режим работы, а в слу­чае «форс-мажора» формирует сигнал управления для бло­кирующего транзистора VT2.

Рис. 15

На рис.3 изображен способ реверсирования двигателя при помощи дополнительных контакторов К4 и К5 и комму­тационных элементов SB1… SB3, но делать это желательно после остановки двигателя или на малых оборотах.

Дополнительные дроссели L5, L6 на рис.14 кроме традици­онной функции сглаживания пульсаций обладают дополнитель­ными функциями — это дифференциальные датчики тока и тем­пературно-зависимые датчики тока. При коротком замыкании в нагрузке, скорость нарастания тока (di/dt) колоссальна и ЭДС наводимая в индуктивности возрастает раньше, чем ток до­стигнет опасных значений. Быстродействующая защита тоже сработает раньше и разрушений не будет — это дифференциаль­ная защита по току. А температурная защита основана на ис­пользовании высокого температурного коэффициента сопротив­ления меди. При увеличении температуры, сопротивление об­мотки увеличивается и это воспринимается датчиком тока, как увеличение тока, что приводит к его автоматическому сниже­нию и защите от перегрева других элементов схемы. От пере­напряжения в нагрузке (например, при пробое силового клю­ча VT1) может защитить реле высокого напряжения К7 (рис.8). После втягивания это реле остается под напряжением, даже если напряжение само нормализовалось — для выявления и устранения неисправности оперативным персоналом.

На рис.9 изображен еще один способ блокировки тайме­ра при аварии, с помощью геркона, аналогичный показанно­му на рис.12. Схема немного сложнее, но имеет большее быстродействие.

Автор: Александр Шуфотинский, г. Кривой Рог
Источник: журнал Электрик №9/2017

Exit mobile version